Skip to main content

Advertisement

Log in

Mesenchymal–epithelial interactions during digestive tract development and epithelial stem cell regeneration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

αSMA:

Alpha smooth muscle actin

AIP:

Anterior intestinal portal

AP:

Anterior-posterior

BMP:

Bone morphogenetic protein

CDX:

Caudal type homeobox

CIP:

Caudal intestinal portal

CRC:

Colorectal cancer

ECM:

Extracellular matrix

ENS:

Enteric nervous system

FGF:

Fibroblast growth factor

GAS1:

Growth arrest specific gene 1

GI:

Gastrointestinal

GSEMF:

Gastric subepithelial myofibroblast

IHH:

Indian hedgehog

ISEMF:

Intestinal subepithelial myofibroblast

miR:

microRNA

P-SMAD1:

Phosphorylated SMAD1/5/8

SHH:

Sonic hedgehog

SOX9:

Sry-containing box gene 9

SM22:

Smooth muscle protein 22

SMC:

Smooth muscle cell

TGF-β:

Transforming growth factor β

vENCC:

Vagal enteric neural crest cell

References

  1. Buller NV, Rosekrans SL, Westerlund J, van den Brink GR (2012) Hedgehog signaling and maintenance of homeostasis in the intestinal epithelium. Physiology (Bethesda) 27(3):148–155. doi:10.1152/physiol.00003.2012

    Article  CAS  Google Scholar 

  2. de Santa Barbara P, van den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60(7):1322–1332. doi:10.1007/s00018-003-2289-3

    Article  CAS  Google Scholar 

  3. Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder NM (2000) Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evol Dev 2(6):348–359

    Article  CAS  PubMed  Google Scholar 

  4. Narita N, Bielinska M, Wilson DB (1997) Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev Biol 189(2):270–274. doi:10.1006/dbio.1997.8684

    Article  CAS  PubMed  Google Scholar 

  5. de Santa Barbara P, Roberts DJ (2002) Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development 129(3):551–561

    Google Scholar 

  6. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11(8):1048–1060

    Article  CAS  PubMed  Google Scholar 

  7. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072

    Article  CAS  PubMed  Google Scholar 

  8. Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119(4):1301–1315

    CAS  PubMed  Google Scholar 

  9. Kaestner KH, Lee KH, Schlondorff J, Hiemisch H, Monaghan AP, Schutz G (1993) Six members of the mouse forkhead gene family are developmentally regulated. Proc Natl Acad Sci USA 90(16):7628–7631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dufort D, Schwartz L, Harpal K, Rossant J (1998) The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125(16):3015–3025

    CAS  PubMed  Google Scholar 

  11. Weinstein DC, Ruiz i Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, Darnell JE Jr (1994) The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78(4):575–588

    Article  CAS  PubMed  Google Scholar 

  12. Zaret K (1999) Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol 209(1):1–10. doi:10.1006/dbio.1999.9228

    Article  CAS  PubMed  Google Scholar 

  13. Rojas A, Schachterle W, Xu SM, Martin F, Black BL (2010) Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer. Dev Biol 346(2):346–355. doi:10.1016/j.ydbio.2010.07.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fort P, Guemar L, Vignal E, Morin N, Notarnicola C, de Santa Barbara P, Faure S (2011) Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Dev Biol 350(2):451–463. doi:10.1016/j.ydbio.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  15. Notarnicola C, Le Guen L, Fort P, Faure S, de Santa Barbara P (2008) Dynamic expression patterns of RhoV/Chp and RhoU/Wrch during chicken embryonic development. Dev Dyn 237(4):1165–1171. doi:10.1002/dvdy.21507

    Article  CAS  PubMed  Google Scholar 

  16. Loebel DA, Studdert JB, Power M, Radziewic T, Jones V, Coultas L, Jackson Y, Rao RS, Steiner K, Fossat N, Robb L, Tam PP (2011) Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development 138(20):4511–4522. doi:10.1242/dev.063867

    Article  CAS  PubMed  Google Scholar 

  17. Loebel DA, Tam PP (2012) Rho GTPases in endoderm development and differentiation. Small GTPases 3(1):40–44. doi:10.4161/sgtp.18820

    Article  PubMed Central  PubMed  Google Scholar 

  18. Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121(10):3163–3174

    CAS  PubMed  Google Scholar 

  19. Dolle P, Izpisua-Belmonte JC, Brown J, Tickle C, Duboule D (1993) Hox genes and the morphogenesis of the vertebrate limb. Prog Clin Biol Res 383A:11–20

    CAS  PubMed  Google Scholar 

  20. Goodman FR, Scambler PJ (2001) Human HOX gene mutations. Clin Genet 59(1):1–11

    Article  CAS  PubMed  Google Scholar 

  21. Imagawa E, Kayserili H, Nishimura G, Nakashima M, Tsurusaki Y, Saitsu H, Ikegawa S, Matsumoto N, Miyake N (2014) Severe manifestations of hand-foot-genital syndrome associated with a novel HOXA13 mutation. Am J Med Genet A 164A(9):2398–2402. doi:10.1002/ajmg.a.36648

    Article  PubMed  CAS  Google Scholar 

  22. Mortlock DP, Innis JW (1997) Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 15(2):179–180. doi:10.1038/ng0297-179

    Article  CAS  PubMed  Google Scholar 

  23. Post LC, Innis JW (1999) Altered Hox expression and increased cell death distinguish Hypodactyly from Hoxa13 null mice. Int J Dev Biol 43(4):287–294

    CAS  PubMed  Google Scholar 

  24. Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124(23):4781–4791

    CAS  PubMed  Google Scholar 

  25. Deschamps J, van Nes J (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132(13):2931–2942. doi:10.1242/dev.01897

    Article  CAS  PubMed  Google Scholar 

  26. Ishii Y, Fukuda K, Saiga H, Matsushita S, Yasugi S (1997) Early specification of intestinal epithelium in the chicken embryo: a study on the localization and regulation of CdxA expression. Dev Growth Differ 39(5):643–653

    Article  CAS  PubMed  Google Scholar 

  27. van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, Meyer BI, Deschamps J (2002) Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129(9):2181–2193

    PubMed  Google Scholar 

  28. Gao N, White P, Kaestner KH (2009) Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 16(4):588–599. doi:10.1016/j.devcel.2009.02.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. van de Ven C, Bialecka M, Neijts R, Young T, Rowland JE, Stringer EJ, Van Rooijen C, Meijlink F, Novoa A, Freund JN, Mallo M, Beck F, Deschamps J (2011) Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138(16):3451–3462. doi:10.1242/dev.066118

    Article  PubMed  CAS  Google Scholar 

  30. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430

    Article  CAS  PubMed  Google Scholar 

  31. Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61. doi:10.1038/1717

    Article  CAS  PubMed  Google Scholar 

  32. Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127(12):2763–2772

    CAS  PubMed  Google Scholar 

  33. Le Douarin N (1964) Induction of prehepatic endoderm by mesoderm of the cardiac region in the Chick Embryo. J Embryol Exp Morphol 12:651–664

    Google Scholar 

  34. Le Douarin N (1964) The experimental isolation of the mesenchyme of the liver and the role of the mesodermal component of the liver in Its organogenesis. J Embryol Exp Morphol 12:141–160

    Google Scholar 

  35. Le Dourain N, Bussonnet C (1966) Early determination and inductive role of the pharyngeal endoderm in the chick embryo. C R Acad Sci Hebd Seances Acad Sci D 263(17):1241–1243

    Google Scholar 

  36. Andrew A, Rawdon BB (1992) Can a non-gut mesenchyme support differentiation of gut endocrine cells? Anat Embryol (Berl) 185(5):509–516

    Article  CAS  Google Scholar 

  37. Aufderheide E, Ekblom P (1988) Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J Cell Biol 107(6 Pt 1):2341–2349

    Article  CAS  PubMed  Google Scholar 

  38. Kedinger M, Simon-Assmann P, Bouziges F, Arnold C, Alexandre E, Haffen K (1990) Smooth muscle actin expression during rat gut development and induction in fetal skin fibroblastic cells associated with intestinal embryonic epithelium. Differentiation 43(2):87–97

    Article  CAS  PubMed  Google Scholar 

  39. Koike T, Yasugi S (1999) In vitro analysis of mesenchymal influences on the differentiation of stomach epithelial cells of the chicken embryo. Differentiation 65(1):13–25. doi:10.1046/j.1432-0436.1999.6510013.x

    Article  CAS  PubMed  Google Scholar 

  40. Rawdon BB (2000) Can gastric endoderm change the regionally specific inducing ability of presumptive small intestinal mesoderm? Dev Dyn 219(3):402–416. doi:10.1002/1097-0177(2000)9999:9999<:AID-DVDY1068>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  41. Sumiya M, Mizuno T (1974) Differentiation of the endoderm in digestive tract of the chick embryo cultured in vitelline membrane, in absence of mesenchyma. C R Acad Sci Hebd Seances Acad Sci D 278(11):1529–1532

    CAS  PubMed  Google Scholar 

  42. Matsushita S, Ishii Y, Scotting PJ, Kuroiwa A, Yasugi S (2002) Pre-gut endoderm of chick embryos is regionalized by 1.5 days of development. Dev Dyn 223(1):33–47. doi:10.1002/dvdy.1229

    Article  PubMed  Google Scholar 

  43. Yasugi S, Mizuno T (2008) Molecular analysis of endoderm regionalization. Dev Growth Differ 50(Suppl 1):S79–S96. doi:10.1111/j.1440-169X.2008.00984.x

    Article  CAS  PubMed  Google Scholar 

  44. Haffen K, Lacroix B, Kedinger M, Simon-Assmann PM (1983) Inductive properties of fibroblastic cell cultures derived from rat intestinal mucosa on epithelial differentiation. Differentiation 23(3):226–233

    CAS  PubMed  Google Scholar 

  45. Kedinger M, Simon-Assmann P, Bouziges F, Haffen K (1988) Epithelial-mesenchymal interactions in intestinal epithelial differentiation. Scand J Gastroenterol Suppl 151:62–69

    Article  CAS  PubMed  Google Scholar 

  46. Kedinger M, Simon-Assmann PM, Lacroix B, Marxer A, Hauri HP, Haffen K (1986) Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev Biol 113(2):474–483

    Article  CAS  PubMed  Google Scholar 

  47. Duluc I, Freund JN, Leberquier C, Kedinger M (1994) Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development. J Cell Biol 126(1):211–221

    Article  CAS  PubMed  Google Scholar 

  48. Hayashi K, Yasugi S, Mizuno T (1988) Pepsinogen gene transcription induced in heterologous epithelial-mesenchymal recombinations of chicken endoderms and glandular stomach mesenchyme. Development 103(4):725–731

    CAS  PubMed  Google Scholar 

  49. Roberts DJ, Smith DM, Goff DJ, Tabin CJ (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125(15):2791–2801

    CAS  PubMed  Google Scholar 

  50. Montavon T, Soshnikova N (2014) Hox gene regulation and timing in embryogenesis. Semin Cell Dev Biol 34:76–84. doi:10.1016/j.semcdb.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  51. Yokouchi Y, Sakiyama J, Kuroiwa A (1995) Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol 169(1):76–89

    Article  CAS  PubMed  Google Scholar 

  52. Aubin J, Dery U, Lemieux M, Chailler P, Jeannotte L (2002) Stomach regional specification requires Hoxa5-driven mesenchymal–epithelial signaling. Development 129(17):4075–4087

    CAS  PubMed  Google Scholar 

  53. Beck F, Tata F, Chawengsaksophak K (2000) Homeobox genes and gut development. BioEssays 22(5):431–441. doi:10.1002/(SICI)1521-1878(200005)22:5<431:AID-BIES5>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  54. Kondo T, Dolle P, Zakany J, Duboule D (1996) Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development 122(9):2651–2659

    CAS  PubMed  Google Scholar 

  55. Sekimoto T, Yoshinobu K, Yoshida M, Kuratani S, Fujimoto S, Araki M, Tajima N, Araki K, Yamamura K (1998) Region-specific expression of murine Hox genes implies the Hox code-mediated patterning of the digestive tract. Genes Cells 3(1):51–64

    Article  CAS  PubMed  Google Scholar 

  56. Smith DM, Nielsen C, Tabin CJ, Roberts DJ (2000) Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 127(17):3671–3681

    CAS  PubMed  Google Scholar 

  57. Whitman M (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev 12(16):2445–2462

    Article  CAS  PubMed  Google Scholar 

  58. Faure S, de Santa Barbara P, Roberts DJ, Whitman M (2002) Endogenous patterns of BMP signaling during early chick development. Dev Biol 244(1):44–65. doi:10.1006/dbio.2002.0579

    Article  CAS  PubMed  Google Scholar 

  59. Faure S, Lee MA, Keller T, ten Dijke P, Whitman M (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127(13):2917–2931

    CAS  PubMed  Google Scholar 

  60. Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ (2005) BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 122(6):821–833. doi:10.1016/j.mod.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  61. Faure S, Georges M, McKey J, Sagnol S, de Santa Barbara P (2013) Expression pattern of the homeotic gene Bapx1 during early chick gastrointestinal tract development. Gene Expr Patterns 13(8):287–292. doi:10.1016/j.gep.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  62. Murtaugh LC, Zeng L, Chyung JH, Lassar AB (2001) The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell 1(3):411–422

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen C, Murtaugh LC, Chyung JC, Lassar A, Roberts DJ (2001) Gizzard formation and the role of Bapx1. Dev Biol 231(1):164–174. doi:10.1006/dbio.2000.0151

    Article  CAS  PubMed  Google Scholar 

  64. De Santa Barbara P, Williams J, Goldstein AM, Doyle AM, Nielsen C, Winfield S, Faure S, Roberts DJ (2005) Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev Dyn 234(2):312–322. doi:10.1002/dvdy.20554

    Article  CAS  Google Scholar 

  65. Theodosiou NA, Tabin CJ (2003) Wnt signaling during development of the gastrointestinal tract. Dev Biol 259(2):258–271

    Article  CAS  PubMed  Google Scholar 

  66. Aitola M, Carlsson P, Mahlapuu M, Enerback S, Pelto-Huikko M (2000) Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn 218(1):136–149. doi:10.1002/(SICI)1097-0177(200005)218:1<136:AID-DVDY12>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  67. Mahlapuu M, Ormestad M, Enerback S, Carlsson P (2001) The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128(2):155–166

    CAS  PubMed  Google Scholar 

  68. McLin VA, Shah R, Desai NP, Jamrich M (2010) Identification and gastrointestinal expression of Xenopus laevis FoxF2. Int J Dev Biol 54(5):919–924. doi:10.1387/ijdb.092916vm

    Article  CAS  PubMed  Google Scholar 

  69. Ormestad M, Astorga J, Carlsson P (2004) Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes. Dev Dyn 229(2):328–333. doi:10.1002/dvdy.10426

    Article  CAS  PubMed  Google Scholar 

  70. Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N, Carlsson P (2006) Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 133(5):833–843. doi:10.1242/dev.02252

    Article  CAS  PubMed  Google Scholar 

  71. Buchberger A, Pabst O, Brand T, Seidl K, Arnold HH (1996) Chick NKx-2.3 represents a novel family member of vertebrate homologues to the Drosophila homeobox gene tinman: differential expression of cNKx-2.3 and cNKx-2.5 during heart and gut development. Mech Dev 56(1–2):151–163

    Article  CAS  PubMed  Google Scholar 

  72. Faure S, McKey J, Sagnol S, de Santa Barbara P (2015) Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 142(2):331–342. doi:10.1242/dev.118422

    Article  CAS  PubMed  Google Scholar 

  73. Pabst O, Schneider A, Brand T, Arnold HH (1997) The mouse Nk2–3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev Dyn 209(1):29–35. doi:10.1002/(SICI)1097-0177(199705)209:1<29:AID-AJA3>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  74. Moniot B, Biau S, Faure S, Nielsen CM, Berta P, Roberts DJ, de Santa Barbara P (2004) SOX9 specifies the pyloric sphincter epithelium through mesenchymal–epithelial signals. Development 131(15):3795–3804. doi:10.1242/dev.01259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Smith DM, Tabin CJ (1999) BMP signalling specifies the pyloric sphincter. Nature 402(6763):748–749. doi:10.1038/45439

    Article  CAS  PubMed  Google Scholar 

  76. Theodosiou NA, Tabin CJ (2005) Sox9 and Nkx2.5 determine the pyloric sphincter epithelium under the control of BMP signaling. Dev Biol 279(2):481–490. doi:10.1016/j.ydbio.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  77. Zhao G, Skeath JB (2002) The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm. Development 129(5):1165–1174

    CAS  PubMed  Google Scholar 

  78. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, Zhang X, Evans SM, Cui Y, Cui S (2014) LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol 12:25. doi:10.1186/1741-7007-12-25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Prakash A, Udager AM, Saenz DA, Gumucio DL (2014) Roles for Nk2–5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol 307(4):G430–G436. doi:10.1152/ajpgi.00360.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Udager AM, Prakash A, Saenz DA, Schinke M, Moriguchi T, Jay PY, Lim KC, Engel JD, Gumucio DL (2014) Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3. Gastroenterology 146(1):157–165 e110. doi:10.1053/j.gastro.2013.10.008

  81. Verzi MP, Stanfel MN, Moses KA, Kim BM, Zhang Y, Schwartz RJ, Shivdasani RA, Zimmer WE (2009) Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 136(5):1701–1710. doi:10.1053/j.gastro.2009.01.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Tissier-Seta JP, Mucchielli ML, Mark M, Mattei MG, Goridis C, Brunet JF (1995) Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech Dev 51(1):3–15

    Article  CAS  PubMed  Google Scholar 

  83. Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA (2005) The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell 8(4):611–622. doi:10.1016/j.devcel.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  84. Kim BM, Miletich I, Mao J, McMahon AP, Sharpe PA, Shivdasani RA (2007) Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development 134(20):3603–3613. doi:10.1242/dev.009308

    Article  CAS  PubMed  Google Scholar 

  85. Kosinski C, Stange DE, Xu C, Chan AS, Ho C, Yuen ST, Mifflin RC, Powell DW, Clevers H, Leung SY, Chen X (2010) Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development. Gastroenterology 139(3):893–903. doi:10.1053/j.gastro.2010.06.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP (2010) Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137(10):1721–1729. doi:10.1242/dev.044586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sukegawa A, Narita T, Kameda T, Saitoh K, Nohno T, Iba H, Yasugi S, Fukuda K (2000) The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127(9):1971–1980

    CAS  PubMed  Google Scholar 

  88. Gabella G (2002) Development of visceral smooth muscle. Results Probl Cell Differ 38:1–37

    Article  PubMed  Google Scholar 

  89. Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, De Santa Barbara P (2012) The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology 143(3):687–697, e681–689. doi:10.1053/j.gastro.2012.05.047

  90. Johnson FP (1913) The development of the mucous membrane of the large intestine and vermiform process in the human embryo. Am J Anat 14:187–233

    Article  Google Scholar 

  91. Fu M, Tam PK, Sham MH, Lui VC (2004) Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat Embryol (Berl) 208(1):33–41. doi:10.1007/s00429-003-0371-0

    Article  CAS  Google Scholar 

  92. Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319(3):367–382. doi:10.1007/s00441-004-1023-2

    Article  PubMed  Google Scholar 

  93. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES, Kaplan DL, Tabin CJ, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342(6155):212–218. doi:10.1126/science.1238842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Burns AJ, Champeval D, Le Douarin NM (2000) Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol 219(1):30–43. doi:10.1006/dbio.1999.9592

    Article  CAS  PubMed  Google Scholar 

  95. Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125(21):4335–4347

    CAS  PubMed  Google Scholar 

  96. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30(1):31–48

    PubMed  Google Scholar 

  97. Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101(2):515–541

    Article  CAS  PubMed  Google Scholar 

  98. Fairman CL, Clagett-Dame M, Lennon VA, Epstein ML (1995) Appearance of neurons in the developing chick gut. Dev Dyn 204(2):192–201. doi:10.1002/aja.1002040210

    Article  CAS  PubMed  Google Scholar 

  99. Breau MA, Dahmani A, Broders-Bondon F, Thiery JP, Dufour S (2009) Beta1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development 136(16):2791–2801. doi:10.1242/dev.031419

    Article  CAS  PubMed  Google Scholar 

  100. Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D, Goldstein AM (2013) Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382(2):446–456. doi:10.1016/j.ydbio.2013.08.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Furness JB (2006) The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci 130(1–2):1–5. doi:10.1016/j.autneu.2006.05.003

    Article  PubMed  Google Scholar 

  102. Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135(12):2151–2160. doi:10.1242/dev.015859

    Article  CAS  PubMed  Google Scholar 

  103. Potten CS (1997) Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol 273(2 Pt 1):G253–G257

    CAS  PubMed  Google Scholar 

  104. Barros R, Freund JN, David L, Almeida R (2012) Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 18(9):555–563. doi:10.1016/j.molmed.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  105. Mills JC, Shivdasani RA (2011) Gastric epithelial stem cells. Gastroenterology 140(2):412–424. doi:10.1053/j.gastro.2010.12.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Grapin-Botton A (2005) Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin’s Ph.D. thesis. Int J Dev Biol 49(2–3):335–347. doi:10.1387/ijdb.041946ag

  107. McLin VA, Henning SJ, Jamrich M (2009) The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 136(7):2074–2091. doi:10.1053/j.gastro.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  108. Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15(1):19–33. doi:10.1038/nrm3721

    Article  CAS  PubMed  Google Scholar 

  109. Kedinger M, Lefebvre O, Duluc I, Freund JN, Simon-Assmann P (1998) Cellular and molecular partners involved in gut morphogenesis and differentiation. Philos Trans R Soc Lond B Biol Sci 353(1370):847–856. doi:10.1098/rstb.1998.0249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Simon-Assmann P, Spenle C, Lefebvre O, Kedinger M (2010) The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions. Prog Mol Biol Transl Sci 96:175–206. doi:10.1016/B978-0-12-381280-3.00008-7

    Article  CAS  PubMed  Google Scholar 

  111. Sappino AP, Dietrich PY, Skalli O, Widgren S, Gabbiani G (1989) Colonic pericryptal fibroblasts. Differentiation pattern in embryogenesis and phenotypic modulation in epithelial proliferative lesions. Virchows Arch A Pathol Anat Histopathol 415(6):551–557

    Article  CAS  PubMed  Google Scholar 

  112. Islam MS, Kusakabe M, Horiguchi K, Iino S, Nakamura T, Iwanaga K, Hashimoto H, Matsumoto S, Murata T, Hori M, Ozaki H (2014) PDGF and TGF-beta promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Br J Pharmacol 171(2):375–388. doi:10.1111/bph.12452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Lahar N, Lei NY, Wang J, Jabaji Z, Tung SC, Joshi V, Lewis M, Stelzner M, Martin MG, Dunn JC (2011) Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium. PLoS One 6(11):e26898. doi:10.1371/journal.pone.0026898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol 277(2 Pt 1):C183–C201

  115. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277(1 Pt 1):C1–C9

  116. Bockman DE, Sohal GS (1998) A new source of cells contributing to the developing gastrointestinal tract demonstrated in chick embryos. Gastroenterology 114(5):878–882

    Article  CAS  PubMed  Google Scholar 

  117. Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA (2005) Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J Gastroenterol 40(12):1089–1099. doi:10.1007/s00535-005-1727-4

    Article  PubMed  Google Scholar 

  118. Mifflin RC, Pinchuk IV, Saada JI, Powell DW (2011) Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol 300(5):G684–G696. doi:10.1152/ajpgi.00474.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Gabbiani G (1996) The cellular derivation and the life span of the myofibroblast. Pathol Res Pract 192(7):708–711. doi:10.1016/S0344-0338(96)80092-6

    Article  CAS  PubMed  Google Scholar 

  120. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873. doi:10.1172/JCI117736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Plateroti M, Rubin DC, Duluc I, Singh R, Foltzer-Jourdainne C, Freund JN, Kedinger M (1998) Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics. Am J Physiol 274(5 Pt 1):G945–G954

    CAS  PubMed  Google Scholar 

  122. Thomason RT, Bader DM, Winters NI (2012) Comprehensive timeline of mesodermal development in the quail small intestine. Dev Dyn 241(11):1678–1694. doi:10.1002/dvdy.23855

    Article  PubMed Central  PubMed  Google Scholar 

  123. Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107(Pt 12):3569–3577

    CAS  PubMed  Google Scholar 

  124. Powell DW, Pinchuk IV, Saada JI, Chen X, Mifflin RC (2011) Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol 73:213–237. doi:10.1146/annurev.physiol.70.113006.100646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Lei NY, Jabaji Z, Wang J, Joshi VS, Brinkley GJ, Khalil H, Wang F, Jaroszewicz A, Pellegrini M, Li L, Lewis M, Stelzner M, Dunn JC, Martin MG (2014) Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One 9(1):e84651. doi:10.1371/journal.pone.0084651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Yeung TM, Chia LA, Kosinski CM, Kuo CJ (2011) Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 68(15):2513–2523. doi:10.1007/s00018-011-0687-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Fritsch C, Swietlicki EA, Lefebvre O, Kedinger M, Iordanov H, Levin MS, Rubin DC (2002) Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J Clin Invest 110(11):1629–1641. doi:10.1172/JCI13588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Andoh A, Fujino S, Hirai Y, Fujiyama Y (2004) Epimorphin expression in human colonic myofibroblasts. Int J Mol Med 13(1):57–61

    CAS  PubMed  Google Scholar 

  129. Wang Y, Wang L, Iordanov H, Swietlicki EA, Zheng Q, Jiang S, Tang Y, Levin MS, Rubin DC (2006) Epimorphin(/) mice have increased intestinal growth, decreased susceptibility to dextran sodium sulfate colitis, and impaired spermatogenesis. J Clin Invest 116(6):1535–1546. doi:10.1172/JCI25442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Shaker A, Swietlicki EA, Wang L, Jiang S, Onal B, Bala S, DeSchryver K, Newberry R, Levin MS, Rubin DC (2010) Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion. J Clin Invest 120(6):2081–2093. doi:10.1172/JCI40676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    CAS  PubMed  Google Scholar 

  132. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Maitra A, Mendell JT (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157(5):1104–1116. doi:10.1016/j.cell.2014.03.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Zeng L, Carter AD, Childs SJ (2009) miR-145 directs intestinal maturation in zebrafish. Proc Natl Acad Sci USA 106(42):17793–17798. doi:10.1073/pnas.0903693106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Katano T, Ootani A, Mizoshita T, Tanida S, Tsukamoto H, Ozeki K, Kataoka H, Joh T (2015) Gastric mesenchymal myofibroblasts maintain stem cell activity and proliferation of murine gastric epithelium in vitro. Am J Pathol 185(3):798–807. doi:10.1016/j.ajpath.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  135. San Roman AK, Jayewickreme CD, Murtaugh LC, Shivdasani RA (2014) Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo. Stem Cell Reports 2(2):127–134. doi:10.1016/j.stemcr.2013.12.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Biau S, Jin S, Fan CM (2013) Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling. Biol Open 2(2):144–155. doi:10.1242/bio.20123186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. DeMeester SR, DeMeester TR (2000) Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg 231(3):303–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Lavery DL, Nicholson AM, Poulsom R, Jeffery R, Hussain A, Gay LJ, Jankowski JA, Zeki SS, Barr H, Harrison R, Going J, Kadirkamanathan S, Davis P, Underwood T, Novelli MR, Rodriguez-Justo M, Shepherd N, Jansen M, Wright NA, McDonald SA (2014) The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut 63(12):1854–1863. doi:10.1136/gutjnl-2013-306508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Slack JM (1985) Homoeotic transformations in man: implications for the mechanism of embryonic development and for the organization of epithelia. J Theor Biol 114(3):463–490

    Article  CAS  PubMed  Google Scholar 

  140. Bai YQ, Yamamoto H, Akiyama Y, Tanaka H, Takizawa T, Koike M, Kenji Yagi O, Saitoh K, Takeshita K, Iwai T, Yuasa Y (2002) Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett 176(1):47–55

    Article  CAS  PubMed  Google Scholar 

  141. Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, Sackett SD, Kaestner KH (2002) Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122(3):689–696

    Article  CAS  PubMed  Google Scholar 

  142. Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C (2015) Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World J Gastroenterol 21(5):1436–1443. doi:10.3748/wjg.v21.i5.1436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T, Sugano K (2004) Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 53(10):1416–1423. doi:10.1136/gut.2003.032482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272. doi:10.1016/j.ccr.2011.01.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Tatematsu M, Tsukamoto T, Mizoshita T (2005) Role of Helicobacter pylori in gastric carcinogenesis: the origin of gastric cancers and heterotopic proliferative glands in Mongolian gerbils. Helicobacter 10(2):97–106. doi:10.1111/j.1523-5378.2005.00305.x

    Article  PubMed  Google Scholar 

  146. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, Sevillano M, Palomo-Ponce S, Tauriello DV, Byrom D, Cortina C, Morral C, Barcelo C, Tosi S, Riera A, Attolini CS, Rossell D, Sancho E, Batlle E (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47(4):320–329. doi:10.1038/ng.3225

    Article  CAS  PubMed  Google Scholar 

  147. Barlow AJ, Wallace AS, Thapar N, Burns AJ (2008) Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 135(9):1681–1691. doi:10.1242/dev.017418

    Article  CAS  PubMed  Google Scholar 

  148. Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ (2014) Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 385(2):220–229. doi:10.1016/j.ydbio.2013.11.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Hatch J, Mukouyama YS (2015) Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine. Dev Dyn 244(1):56–68. doi:10.1002/dvdy.24178

    Article  PubMed  Google Scholar 

  150. Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM, Goldstein AM (2009) Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol 330(2):263–272. doi:10.1016/j.ydbio.2009.03.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in de Santa Barbara’s lab is supported by the Association pour la Recherche Contre le Cancer (ARC) foundation, the Association Française contre les Myopathies (AFM) and the French Patients’ Association POIC. LLG is supported by an ARC post-doctoral fellowship. PdSB thanks Drucilla Jane Roberts for her contribution in the field, inspiration and continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal de Santa Barbara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Guen, L., Marchal, S., Faure, S. et al. Mesenchymal–epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell. Mol. Life Sci. 72, 3883–3896 (2015). https://doi.org/10.1007/s00018-015-1975-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1975-2

Keywords

Navigation