Skip to main content

Advertisement

Log in

Autologous Extracellular Vesicles Attenuate Cardiac Injury in Experimental Atherosclerotic Renovascular Disease More Effectively Than Their Parent Mesenchymal Stem/Stromal Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Atherosclerotic renovascular disease (RVD) leads to hypertension, chronic kidney disease (CKD), and heart disease. Intrarenal delivery of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) attenuate renal injury and suppress release of inflammatory cytokines in porcine RVD. We hypothesized that this strategy would also be useful for cardioprotection. Pigs with renovascular hypertension and metabolic syndrome were studied 4 weeks after treatment with a single intrarenal infusion of autologous MSCs, EVs, or vehicle. Cardiac structure and function were assessed in vivo, and myocardial remodeling and expression of the pro-fibrotic factor growth factor receptor-bound protein-2 (Grb2) were measured ex-vivo. Inflammatory cytokine levels were measured in the systemic circulation and myocardial tissue. Blood pressure was elevated in all RVD groups, but serum creatinine increased in RVD and decreased in both RVD + MSCs and RVD + EVs. RVD-induced diastolic dysfunction (lower E/A ratio) was normalized in both MSCs- and EVs- treated pigs. Intrarenal delivery of MSCs and EVs also attenuated RVD-induced myocardial fibrosis, collagen deposition, and Grb2 expression, yet EVs restored capillary density and inflammation more effectively than MSCs. These observations suggest that autologous EVs attenuate cardiac injury in experimental RVD more effectively than their parent MSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hansen, K. J., Edwards, M. S., Craven, T. E., et al. (2002). Prevalence of renovascular disease in the elderly: a population-based study. Journal of Vascular Surgery, 36(3), 443–451.

    Article  PubMed  Google Scholar 

  2. Textor, S. C., & Lerman, L. O. (2015). Paradigm shifts in atherosclerotic renovascular disease: Where are we now? Journal of the American Society of Nephrology, 26(9), 2074–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zierler, R. E., Bergelin, R. O., Polissar, N. L., et al. (1998). Carotid and lower extremity arterial disease in patients with renal artery atherosclerosis. Archives of Internal Medicine, 158(7), 761–767.

    Article  CAS  PubMed  Google Scholar 

  4. Hall, J. E., Mouton, A. J., da Silva, A. A., et al. (2021). Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovascular Research, 117(8), 1859–1876.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Sun, X., Wang, X., et al. (2021). Grb2 induces cardiorenal syndrome type 3: Roles of IL-6, cardiomyocyte bioenergetics, and Akt/mTOR pathway. Frontiers in Cell and Developmental Biology, 9, 630412.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Betre, H., Ong, S. R., Guilak, F., et al. (2006). Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials, 27(1), 91–99.

    Article  CAS  PubMed  Google Scholar 

  7. Angele, P., Schumann, D., Angele, M., et al. (2004). Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology, 41(3–4), 335–346.

    CAS  PubMed  Google Scholar 

  8. Hass, R., Kasper, C., Böhm, S., et al. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elahi, K. C., Klein, G., Avci-Adali, M., et al. (2016). Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells International, 2016, 5646384.

  10. Dennis, J. E., Carbillet, J. P., Caplan, A. I., et al. (2002). The STRO-1 + marrow cell population is multipotential. Cells, Tissues, Organs, 170(2–3), 73–82.

    Article  PubMed  Google Scholar 

  11. Eirin, A., Zhu, X. Y., Ebrahimi, B., et al. (2015). Intrarenal delivery of mesenchymal stem cells and endothelial progenitor cells attenuates hypertensive cardiomyopathy in experimental renovascular hypertension. Cell Transplantation, 24(10), 2041–2053.

    Article  PubMed  Google Scholar 

  12. Eggenhofer, E., Benseler, V., Kroemer, A., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kouroupis, D., Sanjurjo-Rodriguez, C., Jones, E., et al. (2019). Mesenchymal stem cell functionalization for enhanced therapeutic applications. Tissue Engineering. Part B, Reviews, 25(1), 55–77.

    Article  PubMed  Google Scholar 

  14. Bian, S., Zhang, L., Duan, L., et al. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin, Germany), 92(4), 387–397.

    Article  CAS  PubMed  Google Scholar 

  15. Kamińska, A., Platt, M., Kasprzyk, J., et al. (2016). Urinary extracellular vesicles: Potential biomarkers of renal function in diabetic patients. Journal of Diabetes Research, 2016, 5741518.

  16. Armstrong, J. P., Holme, M. N., & Stevens, M. M. (2017). Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano, 11(1), 69–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fais, S., O’Driscoll, L., Borras, F. E., et al. (2016). Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano, 10(4), 3886–3899.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, Y., Zhu, X., Zhang, L., et al. (2020). Mesenchymal stem/stromal cells and their extracellular vesicle progeny decrease injury in poststenotic swine kidney through different mechanisms. Stem Cells and Development, 29(18), 1190–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eirin, A., Zhu, X. Y., Puranik, A. S., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney International, 92(1), 114–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eirin, A., Zhu, X. Y., Puranik, A. S., et al. (2017). Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One, 12(3), e0174303.

  21. Eirin, A., Zhu, X. Y., Woollard, J. R., et al. (2019). Metabolic syndrome interferes with packaging of proteins within porcine mesenchymal stem cell-derived extracellular vesicles. Stem Cells Translational Medicine, 8(5), 430–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meng, Y., Eirin, A., Zhu, X. Y., et al. (2018). The metabolic syndrome modifies the mRNA expression profile of extracellular vesicles derived from porcine mesenchymal stem cells. Diabetology & Metabolic Syndrome, 10, 58.

    Article  Google Scholar 

  23. Ijaz, M., Wang, F., Shahbaz, M., et al. (2018). The role of Grb2 in cancer and peptides as Grb2 antagonists. Protein and Peptide Letters, 24(12), 1084–1095.

    Article  PubMed  Google Scholar 

  24. Chen, D., Si, W., Shen, J., et al. (2018). miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death and Disease, 9(2), 188.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suen, K. L., Bustelo, X. R., Pawson, T., et al. (1993). Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors. Molecular and Cellular Biology, 13(9), 5500–5512.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baltensperger, K., Kozma, L. M., Cherniack, A. D., et al. (1993). Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science, 260(5116), 1950–1952.

    Article  CAS  PubMed  Google Scholar 

  27. Ganesan, J., Ramanujam, D., Sassi, Y., et al. (2013). MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation, 127(21), 2097–2106.

    Article  CAS  PubMed  Google Scholar 

  28. Xia, Y., Sheng, J., Liang, G. Y., et al. (2015). miR-96 inhibits cardiac hypertrophy by targeting growth factor receptor-bound 2. Genetics and Molecular Research, 14(4), 18958–18964.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, F., Zhuang, Y., Zhu, H., et al. (2019). LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. Journal of Molecular and Cellular Cardiology, 133, 188–198.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, X. R., Zhang, Z., Gao, M., et al. (2020). MicroRNA-27a-3p aggravates renal ischemia/reperfusion injury by promoting oxidative stress via targeting growth factor receptor-bound protein 2. Pharmacological Research, 155, 104718.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, D., Li, Z., Bao, P., et al. (2019). Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(6), 1253–1264.

    Article  CAS  PubMed  Google Scholar 

  32. Pawar, A. S., Zhu, X. Y., Eirin, A., et al. (2015). Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity. Obesity (Silver Spring), 23(2), 399–407.

    Article  CAS  PubMed  Google Scholar 

  33. Lerman, L. O., Schwartz, R. S., Grande, J. P., et al. (1999). Noninvasive evaluation of a novel swine model of renal artery stenosis. Journal of the American Society of Nephrology, 10(7), 1455–1465.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, X., Li, Z. L., Eirin, A., et al. (2015). Cardiac metabolic alterations in hypertensive obese pigs. Hypertension, 66(2), 430–436.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, X. Y., Daghini, E., Chade, A. R., et al. (2007). Simvastatin prevents coronary microvascular remodeling in renovascular hypertensive pigs. Journal of the American Society of Nephrology, 18(4), 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, J., Zhu, X., Chade, A. R., et al. (2009). Monocyte chemoattractant proteins mediate myocardial microvascular dysfunction in swine renovascular hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(11), 1810–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, X. Y., Urbieta-Caceres, V., Krier, J. D., et al. (2013). Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells, 31(1), 117–125.

    Article  CAS  Google Scholar 

  38. Zhu, X. Y., Ebrahimi, B., Eirin, A., et al. (2015). Renal vein levels of microRNA-26a are lower in the poststenotic kidney. Journal of the American Society of Nephrology, 26(6), 1378–1388.

    Article  CAS  PubMed  Google Scholar 

  39. Eirin, A., Zhu, X. Y., Jonnada, S., et al. (2018). Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in swine. Cell Transplantation, 27(7), 1080–1095.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan, F., Hedayat, A. F., Ferguson, C. M., et al. (2018). Mitoprotection attenuates myocardial vascular impairment in porcine metabolic syndrome. American Journal of Physiology Heart and Circulatory Physiology, 314(3), H669-h680.

    PubMed  Google Scholar 

  41. Eirin, A., Zhang, X., Zhu, X. Y., et al. (2014). Renal vein cytokine release as an index of renal parenchymal inflammation in chronic experimental renal artery stenosis. Nephrology, Dialysis, Transplantation, 29(2), 274–282.

    Article  CAS  PubMed  Google Scholar 

  42. Eirin, A., Zhu, X. Y., Ferguson, C. M., et al. (2015). Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease. Stem Cell Research & Therapy, 6(1), 7.

    Article  Google Scholar 

  43. Eirin, A., Zhu, X. Y., Puranik, A. S., et al. (2016). Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Scientific Reports, 6, 36120.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lerman, L., & Textor, S. C. (2001). Pathophysiology of ischemic nephropathy. Urologic Clinics of North America, 28(4), 793–803. ix.

    Article  CAS  PubMed  Google Scholar 

  45. Wallace, E. L., Tasan, E., Cook, B. S., et al. (2016). Long-term outcomes and causes of death in patients with renovascular disease undergoing renal artery stenting. Angiology, 67(7), 657–663.

    Article  PubMed  Google Scholar 

  46. Kim, S. R., Eirin, A., Zhang, X., et al. (2019). Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis. Cellular Physiology and Biochemistry, 52(3), 617–632.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, L., Zhu, X. Y., Zhao, Y., et al. (2020). Selective intrarenal delivery of mesenchymal stem cell-derived extracellular vesicles attenuates myocardial injury in experimental metabolic renovascular disease. Basic Research in Cardiology, 115(2), 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bax, L., Woittiez, A. J., Kouwenberg, H. J., et al. (2009). Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial. Annals of Internal Medicine, 150(12), 840–848.

    Article  PubMed  Google Scholar 

  49. Wheatley, K., Ives, N., Gray, R., et al. (2009). Revascularization versus medical therapy for renal-artery stenosis. New England Journal of Medicine, 361(20), 1953–1962.

    Article  PubMed  Google Scholar 

  50. Higuchi, Y., Otsu, K., Nishida, K., et al. (2002). Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 34(2), 233–240.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, L., Cheng, G., Jin, R., et al. (2016). Deletion of interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circulation Research, 118(12), 1918–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Lullo, L., Reeves, P. B., Bellasi, A., et al. (2019). Cardiorenal syndrome in acute kidney injury. Seminars in Nephrology, 39(1), 31–40.

    Article  PubMed  Google Scholar 

  53. Ghionzoli, N., Sciaccaluga, C., Mandoli, G. E., et al. (2021). Cardiogenic shock and acute kidney injury: the rule rather than the exception. Heart Failure Reviews, 26(3), 487–496.

    Article  CAS  PubMed  Google Scholar 

  54. Kelly, K. J. (2003). Distant effects of experimental renal ischemia/reperfusion injury. Journal of the American Society of Nephrology, 14(6), 1549–1558.

    Article  CAS  PubMed  Google Scholar 

  55. Gho, B. C., Schoemaker, R. G., van den Doel, M. A., et al. (1996). Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 94(9), 2193–2200.

    Article  CAS  PubMed  Google Scholar 

  56. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  57. Berger, L. C., & Hawley, R. G. (1997). Interferon-beta interrupts interleukin-6-dependent signaling events in myeloma cells. Blood, 89(1), 261–271.

    Article  CAS  PubMed  Google Scholar 

  58. Mohanty, P., & Bhatnagar, S. (2018). Structure of focal adhesion kinase in healthy heart versus pathological cardiac hypertrophy: A modeling and simulation study. Journal of Molecular Graphics and Modelling, 80, 15–24.

    Article  CAS  PubMed  Google Scholar 

  59. Chang, P. M., Li, K. L., & Lin, Y. C. (2019). Fucoidan Fucoxanthin ameliorated cardiac function via IRS1/GRB2/ SOS1, GSK3β/CREB pathways and metabolic pathways in senescent mice. Marine Drugs, 17(1).

  60. Qu, Y., Chen, Q., Lai, X., et al. (2014). SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1. Molecular Cancer, 13, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Johnson, J., Shojaee, M., Mitchell, J., Crow, et al. (2021). From mesenchymal stromal cells to engineered extracellular vesicles: A new therapeutic paradigm. Frontiers in Cell and Developmental Biology, 9, 705676.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yun, C. W., & Lee, S. H. (2019). Enhancement of functionality and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for cardiovascular disease. International Journal of Molecular Sciences, 20(4).

  63. Wang, X., Chen, Y., Zhao, Z., et al. (2018). Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. Journal of the American Heart Association, 7(15), e008737.

  64. Teng, X., Chen, L., Chen, W., et al. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu, X., Badawi, M., Pomeroy, S., et al. (2017). Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. Journal of Extracellular Vesicles, 6(1), 1324730.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meng, Y., Eirin, A., Zhu, X. Y., et al. (2018). The metabolic syndrome alters the miRNA signature of porcine adipose tissue-derived mesenchymal stem cells. Cytometry. Part A, 93(1), 93–103.

    Article  CAS  Google Scholar 

  67. Pawar, A. S., Eirin, A., Tang, H., et al. (2020). Upregulated tumor necrosis factor-α transcriptome and proteome in adipose tissue-derived mesenchymal stem cells from pigs with metabolic syndrome. Cytokine, 130, 155080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mon, N. N., Senga, T., & Ito, S. (2017). Interleukin-1β activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncology Letters, 13(2), 955–960.

    Article  CAS  PubMed  Google Scholar 

  69. Hildt, E., & Oess, S. (1999). Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. Journal of Experimental Medicine, 189(11), 1707–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dehghani, M., & Gaborski, T. R. (2020). Fluorescent labeling of extracellular vesicles. Methods in Enzymology, 645, 15–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by NIH grant numbers DK120292, DK122734, HL158691, and AG062104.

Author information

Authors and Affiliations

Authors

Contributions

S.H.: conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript; X.-Y.Z.: conception and design, methodology and supervision, final approval of manuscript; Y.J.: methodology, data analysis and interpretation, final approval of manuscript; L.Z.: methodology, data analysis and interpretation, final approval of manuscript; H.T.: methodology, collection and assembly of data, final approval of manuscript; K.L.J.: methodology, collection and assembly of data, final approval of manuscript; I.M.S.: methodology, collection and assembly of data, final approval of manuscript; W.H.: methodology, final approval of manuscript; A.L.: resources and supervision, final approval of manuscript; A.E.: financial support and resources, final approval of manuscript; L.O.L.: conception and design, financial support, manuscript writing, final approval of manuscript.

Corresponding author

Correspondence to Lilach O. Lerman.

Ethics declarations

Ethics Approval

The study was approved by the Mayo Clinical Animal Care and Use Committee (A65014-15).

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and agreed to the published version of the manuscript.

Competing Interests

LOL is an advisor to AstraZeneca, Butterfly Biosciences, CureSpec, Beren Therapeutics, and Ribocure Pharmaceuticals. The other authors indicated no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Zhu, XY., Jiang, Y. et al. Autologous Extracellular Vesicles Attenuate Cardiac Injury in Experimental Atherosclerotic Renovascular Disease More Effectively Than Their Parent Mesenchymal Stem/Stromal Cells. Stem Cell Rev and Rep 19, 700–712 (2023). https://doi.org/10.1007/s12015-022-10473-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10473-2

Keywords

Navigation