Skip to main content

Advertisement

Log in

SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs

  • Review
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data set analysed during the current study is referenced in the text and is publicly available at https://drive.google.com/drive/folders/1fxa3shg3sn6SkQc3D6n0p9sXwz4abPuL?usp=drive_link

Abbreviations

ABCA1:

ATP-binding cassette transporters A1

ABCG1:

ATP-binding cassette transporters G1

AIF:

Apoptosis-inducing factor

Akt/mTOR:

Protein kinase B (Akt) and mammalian target of rapamycin

AMI:

Acute myocardial infarction

AMPK:

Adenosine monophosphate-activated protein kinase

ANG-II:

Angiotensin II

ANT:

Adenine nucleotide translocase

Bcl-2:

B-cell lymphoma-2

CHD:

Coronary heart disease

CM:

Cardiomyopathy

CSE:

Cigarette smoking extract

CVDs:

Cardiovascular diseases

D-gal:

D-galactose

DRP1:

Dynamin-related protein 1

DSBs:

Double-strand breakage

EMT:

Epithelial-mesenchymal transition

FDL:

“Fluor-de-Lys” deacetylation

FIS1:

Fission protein 1

FOXO:

Forkhead box class O

GCN5:

General control non-repressed protein 5

GSIS:

Glucose-stimulated insulin secretion

H3K9:

Histone H3 lysine 9

HBECs:

Human bronchial-tracheal epithelial cells

HF:

Heart failure

HF-HS:

High-fat, high-sucrose

HIF1-α:

Hypoxia-inducible factor 1-alpha

HM p-type Loci:

Haploid mating

HO-1:

Heme oxygenase

hTERT:

Human telomerase reverse transcriptase

I/R injury:

Ischemia–reperfusion

IGF:

Insulin-like growth factor

IHD:

Ischemic heart disease

JAK2/STAT3:

Janus kinase 2/signal transducer and activator of transcription

JNK:

C-Jun N-terminal kinases

Keap l:

Kelch-like ECH-associated protein 1

KO:

Knockout

LDL:

Low-density lipoproteins

MFN1/2:

Mitofusin-1/2

MnSOD:

Manganese superoxide dismutase

mtDNA:

Mitochondrial DNA

mTORC2:

MTOR complex 2

NAD + :

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Nkx3.2:

NK3 homeobox 2

NRCMs:

Neonatal rat cardiomyocytes

NRF1:

Nuclear respiratory factor 1

NRF2/:

Nuclear factor erythropoietin-2-related factor 2

PARP1:

Poly (ADP-ribose) polymerase 1

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PDHE1α:

Pyruvate dehydrogenase E1 alpha

PDHK1:

Pyruvate dehydrogenase kinase-1

PDK:

Pyruvate dehydrogenase gene

PGC-1:

Gamma coactivator-1

PPAR:

Peroxisome proliferator-activated receptor

PT:

Permeability transition

ROS:

Reactive oxygen species

SD rats:

Sprague–Dawley

SIRT:

Sirtuin

SMC:

Smooth muscle cells

SOD2:

Superoxide dismutase 2

SREBPs:

Sterol regulatory element-binding proteins

T2DM:

Type 2 diabetes mellitus

t-BHP:

Tert-butyl hydroperoxide

TNFSF4:

Tumour necrosis factor superfamily member 4

References

  1. Deaton, C., Froelicher, E. S., Wu, L. H., Ho, C., Shishani, K., & Jaarsma, T. (2011). The Global burden of cardiovascular disease. European Journal of Cardiovascular Nursing, 10(2_Suppl), S5-13.

    Article  PubMed  Google Scholar 

  2. World Health Organization. Regional Office for Europe. Global atlas on cardiovascular disease prevention and control: published by the World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization [Internet]. Copenhagen: World Health Organization. Regional Office for Europe; 2011. 155 p. https://iris.who.int/handle/10665/329516. Accessed 20 Nov 2011.

  3. Zhu, L., Chen, Z., Han, K., Zhao, Y., Li, Y., Li, D., et al. (2020). Correlation between mitochondrial dysfunction, cardiovascular diseases, and traditional chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2020, 2902136.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ruan, L., Wang, Y., Zhang, X., Tomaszewski, A., McNamara, J. T., & Li, R. (2020). Mitochondria-associated proteostasis. Annual Review of Biophysics, 6(49), 41–67.

    Article  Google Scholar 

  5. Siasos, G., Tsigkou, V., Kosmopoulos, M., Theodosiadis, D., Simantiris, S., Tagkou, N. M., et al. (2018). Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Annals of Translational Medicine, 6(12), 256.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., et al. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2(1), 16080.

    Article  PubMed  Google Scholar 

  7. Qiao, X., Jia, S., Ye, J., Fang, X., Zhang, C., Cao, Y., et al. (2017). PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Science and Reports, 7(1), 45379.

    Article  CAS  Google Scholar 

  8. Hao, Y., Lu, Q., Yang, G., & Ma, A. (2016). Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement. Biochemical and Biophysical Research Communications, 479(4), 833–840.

    Article  CAS  PubMed  Google Scholar 

  9. Kennedy, B. K., Gotta, M., Sinclair, D. A., Mills, K., McNabb, D. S., Murthy, M., et al. (1997). Redistribution of silencing proteins from telomeres to the nucleolus Is associated with extension of life span in S. cerevisiae. Cell, 89(3), 381–391.

    Article  CAS  PubMed  Google Scholar 

  10. Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development, 13(19), 2570–2580.

    Article  CAS  Google Scholar 

  11. Imai, S. I., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771), 795–800.

    Article  CAS  PubMed  Google Scholar 

  12. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., et al. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences, 97(11), 5807–5811.

    Article  CAS  Google Scholar 

  13. Kumari, P., Tarighi, S., Braun, T., & Ianni, A. (2021). SIRT7 acts as a guardian of cellular integrity by controlling nucleolar and extra-nucleolar functions. Genes, 12(9), 1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., & Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Development, 20(9), 1075–1080.

    Article  CAS  Google Scholar 

  15. Banks, A. S., Kon, N., Knight, C., Matsumoto, M., Gutiérrez-Juárez, R., Rossetti, L., et al. (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metabolism, 8(4), 333–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nature Reviews Molecular Cell Biology, 17(11), 679–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haigis, M. C., & Guarente, L. P. (2006). Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes & Development, 20(21), 2913–2921.

    Article  CAS  Google Scholar 

  18. Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imai, S. I., & Guarente, L. (2014). NAD+ and sirtuins in aging and disease. Trends in Cell Biology, 24(8), 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., et al. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221.

    Article  CAS  PubMed  Google Scholar 

  21. Kanfi, Y., Peshti, V., Gil, R., Naiman, S., Nahum, L., Levin, E., et al. (2010). SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell, 9(2), 162–173.

    Article  CAS  PubMed  Google Scholar 

  22. Kugel, S., Sebastián, C., Fitamant, J., Ross, K. N., Saha, S. K., Jain, E., et al. (2016). SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell, 165(6), 1401–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell, S. J., Martin-Montalvo, A., Mercken, E. M., Palacios, H. H., Ward, T. M., Abulwerdi, G., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Reports, 6(5), 836–843.

    Article  CAS  PubMed  Google Scholar 

  24. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., & Tschop, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences, 105(28), 9793–9798.

    Article  CAS  Google Scholar 

  25. Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., et al. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism, 18(3), 416–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borradaile, N. M., & Pickering, J. G. (2009). Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell, 8(2), 100–112.

    Article  CAS  PubMed  Google Scholar 

  27. Kane, A. E., & Sinclair, D. A. (2018). Sirtuins and NAD + in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou, T., Cao, Z., Zhang, J., Tang, M., Tian, Y., Li, Y., et al. (2020). SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Research, 48(6), 2982–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., et al. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R. E., Vadysirisack, D. D., et al. (2010). The histone deacetylase SIRT6 regulates glucose homeostasis via Hif1α. Cell, 140(2), 280–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guarente, L. (2011). Sirtuins, aging, and medicine. New England Journal of Medicine, 364(23), 2235–2244.

    Article  CAS  PubMed  Google Scholar 

  32. Winnik, S., Auwerx, J., Sinclair, D. A., & Matter, C. M. (2015). Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. European Heart Journal, 36(48), 3404–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., et al. (2013). SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 496(7443), 110–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ardestani, P. M., & Liang, F. (2012). Sub-cellular localization, expression and functions of SIRT6 during the cell cycle in HeLa cells. Nucleus, 3(5), 442–451.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature, 452(7186), 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, F., Zhang, Q., Zhang, K., Xie, W., & Grunstein, M. (2007). Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular Cell, 27(6), 890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., et al. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 459(7248), 802–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dong, X. C. (2023). Sirtuin 6—a key regulator of hepatic lipid metabolism and liver health. Cells, 12(4), 663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rezazadeh, S., Yang, D., Biashad, S. A., Firsanov, D., Takasugi, M., Gilbert, M., et al. (2020). SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging, 12(12), 11165–11184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lombard, D. B., Schwer, B., Alt, F. W., & Mostoslavsky, R. (2008). SIRT6 in DNA repair, metabolism and ageing. Journal of Internal Medicine, 263(2), 128–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCord, R. A., Michishita, E., Hong, T., Berber, E., Boxer, L. D., Kusumoto, R., et al. (2009). SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging, 1(1), 109–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein, M. A., & Denu, J. M. (2020). Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 295(32), 11021–11041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan, P. W., Feldman, J. L., Devries, M. K., Dong, A., Edwards, A. M., & Denu, J. M. (2011). Structure and biochemical functions of SIRT6. Journal of Biological Chemistry, 286(16), 14575–14587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onn, L., Portillo, M., Ilic, S., Cleitman, G., Stein, D., Kaluski, S., et al. (2020). SIRT6 is a DNA double-strand break sensor. eLife, 29(9), e51636.

    Article  Google Scholar 

  45. Raghu, S., Prabhashankar, A. B., Shivanaiah, B., Tripathi, E., & Sundaresan, N. R. (2022). Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. In T. K. Kundu & C. Das (Eds.), Metabolism and Epigenetic Regulation: Implications in Cancer (Vol. 100, pp. 337–360). Springer International Publishing. https://doi.org/10.1007/978-3-031-07634-3_10

    Chapter  Google Scholar 

  46. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. MBoC, 16(10), 4623–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & Development, 20(10), 1256–1261.

    Article  CAS  Google Scholar 

  48. Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L., & Verdin, E. (2010). Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804(8), 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  49. Kawahara, T. L. A., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell, 136(1), 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature, 487(7405), 114–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, L., Shi, L., Yang, S., Yan, R., Zhang, D., Yang, J., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications, 7(1), 12235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, M., Zhang, Y., Komaniecki, G. P., Lu, X., Cao, J., Zhang, M., et al. (2022). Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation. Nature Communications, 13(1), 4494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, A. Q., Wang, J., Jiang, S. T., Yuan, L. Q., Ma, H. Y., Hu, Y. M., et al. (2021). SIRT7-induced PHF5A decrotonylation regulates aging progress through alternative splicing-mediated downregulation of CDK2. Frontiers in Cell and Developmental Biology, 17(9), 710479.

    Google Scholar 

  54. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13(4), 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amat, R., Planavila, A., Chen, S. L., Iglesias, R., Giralt, M., & Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. Journal of Biological Chemistry, 284(33), 21872–21880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Olmos, Y., Sánchez-Gómez, F. J., Wild, B., García-Quintans, N., Cabezudo, S., Lamas, S., et al. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antioxidants & Redox Signaling, 19(13), 1507–1521.

    Article  CAS  Google Scholar 

  57. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 127(6), 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  58. Lee, I. H., Cao, L., Mostoslavsky, R., Lombard, D. B., Liu, J., Bruns, N. E., et al. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proceedings of the National academy of Sciences of the United States of America, 105(9), 3374–3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, T., Yang, Q., Zhang, X., Qin, R., Shan, W., Zhang, H., et al. (2020). Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sciences, 257, 118116.

    Article  CAS  PubMed  Google Scholar 

  60. Oanh, N. T. K., Park, Y. Y., & Cho, H. (2017). Mitochondria elongation is mediated through SIRT1-mediated MFN1 stabilization. Cellular Signalling, 38, 67–75.

    Article  CAS  PubMed  Google Scholar 

  61. Song, S. B., Park, J. S., Jang, S. Y., & Hwang, E. S. (2021). Nicotinamide treatment facilitates mitochondrial fission through Drp1 activation mediated by SIRT1-induced changes in cellular levels of cAMP and Ca2+. Cells, 10(3), 612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lemos, V., De Oliveira, R. M., Naia, L., Szegö, É., Ramos, E., Pinho, S., et al. (2017). The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 26(21), 4105–4117.

    Article  CAS  PubMed  Google Scholar 

  63. Fourcade, S., Morató, L., Parameswaran, J., Ruiz, M., Ruiz-Cortés, T., Jové, M., et al. (2017). Loss of SIRT 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 16(6), 1404–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cha, Y., Kim, T., Jeon, J., Jang, Y., Kim, P. B., Lopes, C., et al. (2021). SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Reports, 37(13), 110155.

    Article  CAS  PubMed  Google Scholar 

  65. Xin, T., & Lu, C. (2020). SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging, 12(16), 16224–16237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tseng, A. H. H., Shieh, S. S., & Wang, D. L. (2013). SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine, 63, 222–234.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, Z. D., & Tan, E. K. (2020). Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Research Reviews, 62, 101107.

    Article  CAS  PubMed  Google Scholar 

  68. Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., Wolfgeher, D., et al. (2014). SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Molecular and Cellular Biology, 34(5), 807–819.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lang, A., Anand, R., Altinoluk-Hambüchen, S., Ezzahoini, H., Stefanski, A., Iram, A., et al. (2018). Correction: SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging (Albany NY), 10(9), 2536c.

    Article  PubMed  Google Scholar 

  70. Buler, M., Aatsinki, S., Izzi, V., Uusimaa, J., & Hakkola, A. J. (2014). SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. The FASEB Journal, 28(7), 3225–3237.

    Article  CAS  PubMed  Google Scholar 

  71. Haschler, T. N., Horsley, H., Balys, M., Anderson, G., Taanman, J. W., Unwin, R. J., et al. (2021). Sirtuin 5 depletion impairs mitochondrial function in human proximal tubular epithelial cells. Science and Reports, 11(1), 15510.

    Article  CAS  Google Scholar 

  72. Zhang, M., Wu, J., Sun, R., Tao, X., Wang, X., Kang, Q., et al. (2019). SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 14(2), e0211796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. (2017). Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(1), 169–176.

    Article  CAS  PubMed  Google Scholar 

  74. Yu, L., Dong, X., Xue, X., Xu, S., Zhang, X., Xu, Y., et al. (2021). Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. Journal of Pineal Research, 70(1), e12698.

    Article  CAS  PubMed  Google Scholar 

  75. Hong, Y. X., Wu, W. Y., Song, F., Wu, C., Li, G. R., & Wang, Y. (2021). Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy. Aging, 13(12), 16381–16403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, Z., Liang, W., Hu, J., Zhu, Z., Feng, J., Ma, Y., et al. (2022). SIRT6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Proliferation, 55(10), e13296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smirnov, D., Eremenko, E., Stein, D., Kaluski, S., Jasinska, W., Cosentino, C., et al. (2023). SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death & Disease, 14(1), 35.

    Article  CAS  Google Scholar 

  78. Yan, W., Liang, Y., Zhang, Q., Wang, D., Lei, M., Qu, J., et al. (2018). Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis. EMBO Reports, 19(12), e46377.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., et al. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation Research, 102(6), 703–710.

    Article  CAS  PubMed  Google Scholar 

  80. Mohrin, M., Shin, J., Liu, Y., Brown, K., Luo, H., Xi, Y., et al. (2015). A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science, 347(6228), 1374–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dominy, J. E., Lee, Y., Jedrychowski, M. P., Chim, H., Jurczak, M. J., Camporez, J. P., et al. (2012). The deacetylase SIRT6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Molecular Cell, 48(6), 900–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National academy of Sciences of the United States of America, 111(29), 10684–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qin, K., Zhang, N., Zhang, Z., Nipper, M., Zhu, Z., Leighton, J., et al. (2018). SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia, 61(4), 906–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Heemst, D. (2010). Insulin, IGF-1 and longevity. Aging & Disease, 1(2), 147–157.

    Google Scholar 

  85. Sundaresan, N. R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., et al. (2012). The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine, 18(11), 1643–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao, C., Kim, H. S., Lahusen, T., Wang, R. H., Xu, X., Gavrilova, O., et al. (2010). SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. Journal of Biological Chemistry, 285(47), 36776–36784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, M., Seto, E., & Zhang, J. (2015). E2F1 enhances glycolysis through suppressing SIRT6 transcription in cancer cells. Oncotarget, 6(13), 11252–11263.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Santos-Barriopedro, I., Bosch-Presegué, L., Marazuela-Duque, A., De La Torre, C., Colomer, C., Vazquez, B. N., et al. (2018). SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nature Communications, 9(1), 101.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cui, X., Yao, L., Yang, X., Gao, Y., Fang, F., Zhang, J., et al. (2017). SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. American Journal of Physiology-Endocrinology and Metabolism, 313(4), E493-505.

    Article  CAS  PubMed  Google Scholar 

  90. Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). FoxO3 transcription factor and SIRT6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. Journal of Biological Chemistry, 288(41), 29252–29259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuang, J., Zhang, Y., Liu, Q., Shen, J., Pu, S., Cheng, S., et al. (2017). Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes, 66(5), 1159–1171.

    Article  CAS  PubMed  Google Scholar 

  92. Chen, Q., Hao, W., Xiao, C., Wang, R., Xu, X., Lu, H., et al. (2017). SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Reports, 18(13), 3155–3166.

    Article  CAS  PubMed  Google Scholar 

  93. Fan, Y., Yang, Q., Yang, Y., Gao, Z., Ma, Y., Zhang, L., et al. (2019). SIRT6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. International Journal of Biological Sciences, 15(3), 701–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, R., Wang, J., Zhang, Z., Ma, B., Sun, S., Gao, L., et al. (2023). FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Molecular Medicine, 29(1), 165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, J., Sun, D., Liu, Z., Li, M., Hong, H., Liu, C., et al. (2016). SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Translational Research, 172, 96-112.e6.

    Article  CAS  PubMed  Google Scholar 

  96. Cheng, M. Y., Cheng, Y. W., Yan, J., Hu, X. Q., Zhang, H., Wang, Z. R., et al. (2016). SIRT6 suppresses mitochondrial defects and cell death via the NF-κB pathway in myocardial hypoxia/reoxygenation induced injury. American Journal of Translational Research, 8(11), 5005–5015.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Maksin-Matveev, A., Kanfi, Y., Hochhauser, E., Isak, A., Cohen, H. Y., & Shainberg, A. (2015). Sirtuin 6 protects the heart from hypoxic damage. Experimental Cell Research, 330(1), 81–90.

    Article  CAS  PubMed  Google Scholar 

  98. Wang, T., Sun, C., Hu, L., Gao, E., Li, C., Wang, H., et al. (2020). SIRT6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells. Biochemistry and Cell Biology, 98(2), 120–129.

    Article  PubMed  Google Scholar 

  99. Pillai, V. B., Samant, S., Hund, S., Gupta, M., & Gupta, M. P. (2021). The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging, 13(9), 12334–12358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tian, K., Liu, Z., Wang, J., Xu, S., You, T., & Liu, P. (2015). Sirtuin-6 inhibits cardiac fibroblasts differentiation into myofibroblasts via inactivation of nuclear factor κB signaling. Translational Research, 165(3), 374–386.

    Article  CAS  PubMed  Google Scholar 

  101. Maity, S., Muhamed, J., Sarikhani, M., Kumar, S., Ahamed, F., Spurthi, K. M., et al. (2020). Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. Journal of Biological Chemistry, 295(2), 415–434.

    Article  CAS  PubMed  Google Scholar 

  102. Li, X., Liu, L., Li, T., Liu, M., Wang, Y., Ma, H., et al. (2021). SIRT6 in senescence and aging-related cardiovascular diseases. Frontiers in Cell and Developmental Biology, 29(9), 641315.

    Article  Google Scholar 

  103. Cardus, A., Uryga, A. K., Walters, G., & Erusalimsky, J. D. (2013). SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovascular Research, 97(3), 571–579.

    Article  CAS  PubMed  Google Scholar 

  104. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annual Review of Genetics, 39(1), 359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.

    Article  CAS  PubMed  Google Scholar 

  106. Ryan, M. T., & Hoogenraad, N. J. (2007). Mitochondrial-nuclear communications. Annual Review of Biochemistry, 76(1), 701–722.

    Article  CAS  PubMed  Google Scholar 

  107. Hall, A. R., Burke, N., Dongworth, R. K., & Hausenloy, D. J. (2014). Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease. British Journsl of Pharmacology, 171(8), 1890–1906.

    Article  CAS  Google Scholar 

  108. Ott, M., Amunts, A., & Brown, A. (2016). Organization and regulation of mitochondrial protein synthesis. Annual Review of Biochemistry, 2(85), 77–101.

    Article  Google Scholar 

  109. Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta (BBA) - Structure and Expression, 1576(1–2), 1–14.

    CAS  Google Scholar 

  110. Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A., & Spiegelman, B. M. (2006). Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proceedings of the National academy of Sciences of the United States of America, 103(26), 10086–10091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garnier, A., Fortin, D., Deloménie, C., Momken, I., Veksler, V., & Ventura-Clapier, R. (2003). Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology, 551(2), 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, L., Zhang, Q., Yuan, K., & Yuan, J. (2021). mtDNA in the pathogenesis of cardiovascular diseases. Disease Markers, 2021, 1–8.

    Article  Google Scholar 

  113. Chen, Y., Liu, Y., & Dorn, G. W. (2011). Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circulation Research, 109(12), 1327–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Papanicolaou, K. N., Kikuchi, R., Ngoh, G. A., Coughlan, K. A., Dominguez, I., Stanley, W. C., et al. (2012). Mitofusins 1 and 2 Are essential for postnatal metabolic remodeling in heart. Circulation Research, 111(8), 1012–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Manczak, M., Sesaki, H., Kageyama, Y., & Reddy, P. H. (2012). Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1822(6), 862–874.

    Article  CAS  Google Scholar 

  116. Kubli, D. A., Zhang, X., Lee, Y., Hanna, R. A., Quinsay, M. N., Nguyen, C. K., et al. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. Journal of Biological Chemistry, 288(2), 915–926.

    Article  CAS  PubMed  Google Scholar 

  117. Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 19(11), 42.

    Article  PubMed  Google Scholar 

  118. Sovari, A. A., Rutledge, C. A., Jeong, E. M., Dolmatova, E., Arasu, D., Liu, H., et al. (2013). Mitochondria oxidative stress, Connexin43 remodeling, and sudden arrhythmic death. Circulation Arrhythmia and Electrophysiology, 6(3), 623–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rutledge, C., & Dudley, S. (2013). Mitochondria and arrhythmias. Expert Review of Cardiovascular Therapy, 11(7), 799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Karamanlidis, G., Nascimben, L., Couper, G. S., Shekar, P. S., del Monte, F., & Tian, R. (2010). Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circulation Research, 106(9), 1541–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Borchi, E., Bargelli, V., Stillitano, F., Giordano, C., Sebastiani, M., Nassi, P. A., et al. (2010). Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1802(3), 331–338.

    Article  CAS  Google Scholar 

  122. Sam, F., Kerstetter, D. L., Pimental, D. R., Mulukutla, S., Tabaee, A., Bristow, M. R., et al. (2005). Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, 11(6), 473–480.

    Article  CAS  PubMed  Google Scholar 

  123. Ahuja, P., Wanagat, J., Wang, Z., Wang, Y., Liem, D. A., Ping, P., et al. (2013). Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation, 127(19), 1957–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garnier, A., Zoll, J., Fortin, D., N’Guessan, B., Lefebvre, F., Geny, B., et al. (2009). Control by circulating factors of mitochondrial function and transcription cascade in heart failure: A role for endothelin-1 and angiotensin II. Circulation Heart Failure, 2(4), 342–350.

    Article  CAS  PubMed  Google Scholar 

  125. Maejima, Y., Kuroda, J., Matsushima, S., Ago, T., & Sadoshima, J. (2011). Regulation of myocardial growth and death by NADPH oxidase. Journal of Molecular and Cellular Cardiology, 50(3), 408–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356(11), 1140–1151.

    Article  PubMed  Google Scholar 

  127. Peng, W., Cai, G., Xia, Y., Chen, J., Wu, P., Wang, Z., et al. (2019). Mitochondrial dysfunction in atherosclerosis. DNA and Cell Biology, 38(7), 597–606.

    Article  CAS  PubMed  Google Scholar 

  128. Hulsmans, M., Van Dooren, E., & Holvoet, P. (2012). Mitochondrial reactive oxygen species and risk of atherosclerosis. Current Atherosclerosis Reports, 14(3), 264–276.

    Article  CAS  PubMed  Google Scholar 

  129. Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115(3), 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Finsterer, J. (2009). Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology, 30(5), 659–681.

    Article  PubMed  Google Scholar 

  131. Rouslin, W. (1983). Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. American Journal of Physiology-Heart and Circulatory Physiology, 244(6), H743–H748.

    Article  CAS  Google Scholar 

  132. Asimakis, G., & Conti, V. (1984). Myocardial ischemia: Correlation of mitochondrial adenine nucleotide and respiratory function. Journal of Molecular and Cellular Cardiology, 16(5), 439–447.

    Article  CAS  PubMed  Google Scholar 

  133. Borutaite, V., Mildaziene, V., Brown, G. C., & Brand, M. D. (1995). Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochimica et Biophysica (BBA) - Molecular Basis of Disease, 1272(3), 154–158.

    Article  Google Scholar 

  134. Paradies, G., Petrosillo, G., Pistolese, M., Di Venosa, N., Serena, D., & Ruggiero, F. M. (1999). Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radical Biology and Medicine, 27(1–2), 42–50.

    Article  CAS  PubMed  Google Scholar 

  135. Turrens, J. F., Beconi, M., Barilla, J., Chavez, U. B., & McCord, J. M. (1991). Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radical Research Communications, 13(1), 681–689.

    Article  Google Scholar 

  136. Griffiths, E. J., & Halestrap, A. P. (1995). Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochemical Journal, 307(1), 93–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Di Lisa, F., Menabò, R., Canton, M., Barile, M., & Bernardi, P. (2001). Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD + and is a causative event in the death of myocytes in postischemic reperfusion of the heart. Journal of Biological Chemistry, 276(4), 2571–2575.

    Article  PubMed  Google Scholar 

  138. Stone, D., Darley-Usmar, V., Smith, D. R., & O’Leary, V. (1989). Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: The role of mitochondria. Journal of Molecular and Cellular Cardiology, 21(10), 963–973.

    Article  CAS  PubMed  Google Scholar 

  139. Schilling, J. D. (2015). The mitochondria in diabetic heart failure: From pathogenesis to therapeutic promise. Antioxidants & Redox Signaling, 22(17), 1515–1526.

    Article  CAS  Google Scholar 

  140. Verma, S. K., Garikipati, V. N. S., & Kishore, R. (2017). Mitochondrial dysfunction and its impact on diabetic heart. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, B., & Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. Journal of Clinical Investigation, 128(9), 3716–3726.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mahalakshmi, A., & Kurian, G. A. (2020). Mitochondrial dysfunction plays a key role in the abrogation of cardioprotection by sodium hydrosulfide post-conditioning in diabetic cardiomyopathy rat heart. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(3), 339–348.

    Article  Google Scholar 

  143. Yao, K., Zhang, W. W., Yao, L., Yang, S., Nie, W., & Huang, F. (2016). Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochemical and Biophysical Research Communications, 470(4), 961–966.

    Article  CAS  PubMed  Google Scholar 

  144. Andres, A. M., Hernandez, G., Lee, P., Huang, C., Ratliff, E. P., Sin, J., et al. (2014). Mitophagy is required for acute cardioprotection by simvastatin. Antioxidants & Redox Signaling, 21(14), 1960–1973.

    Article  CAS  Google Scholar 

  145. Coronado, M., Fajardo, G., Nguyen, K., Zhao, M., Kooiker, K., Jung, G., et al. (2018). Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand. Circulation Research, 122(2), 282–295.

    Article  CAS  PubMed  Google Scholar 

  146. Kong, D., Zhan, Y., Liu, Z., Ding, T., Li, M., Yu, H., et al. (2016). SIRT1-mediated ERβ suppression in the endothelium contributes to vascular aging. Aging Cell, 15(6), 1092–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cea, M., Cagnetta, A., Adamia, S., Acharya, C., Tai, Y. T., Fulciniti, M., et al. (2016). Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 127(9), 1138–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Feldman, J. L., Baeza, J., & Denu, J. M. (2013). Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Journal of Biological Chemistry, 288(43), 31350–31356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo, Z., Li, P., Ge, J., & Li, H. (2022). SIRT6 in aging, metabolism, inflammation and cardiovascular diseases. Aging and disease, 13(6), 1787.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., & Gupta, M. P. (2019). The nuclear and mitochondrial sirtuins, SIRT6 and SIRT3, regulate each other’s activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. The FASEB Journal, 33(10), 10872–10888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kugel, S., & Mostoslavsky, R. (2014). Chromatin and beyond: The multitasking roles for SIRT6. Trends in Biochemical Sciences, 39(2), 72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stein, A. B., Giblin, W., Guo, A. H., & Lombard, D. B. (2018). Roles for Sirtuins in Cardiovascular Biology. Introductory Review on Sirtuins in Biology, Aging, and Disease (pp. 155–173). Elsevier.

    Google Scholar 

  153. Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.

    Article  PubMed  Google Scholar 

  154. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism, 3(3), 187–197.

    Article  CAS  PubMed  Google Scholar 

  155. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.

    Article  CAS  PubMed  Google Scholar 

  156. van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death and Differentiation, 9(10), 1031–1042.

    Article  PubMed  Google Scholar 

  157. Song, L., Chen, X., Mi, L., Liu, C., Zhu, S., Yang, T., et al. (2020). Icariin-induced inhibition of SIRT6/NF-κB triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Science, 111(11), 4242–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Balestrieri, M. L., Rizzo, M. R., Barbieri, M., Paolisso, P., D’Onofrio, N., Giovane, A., et al. (2015). Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of incretin treatment. Diabetes, 64(4), 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  159. Xiong, X., Wang, G., Tao, R., Wu, P., Kono, T., Li, K., et al. (2016). Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia, 59(1), 151–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xiong, X., Sun, X., Wang, Q., Qian, X., Zhang, Y., Pan, X., et al. (2016). SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. Journal of Endocrinology, 231(2), 159–165.

    Article  CAS  PubMed  Google Scholar 

  161. Feng, J., Yan, P. F., Zhao, H. Y., Zhang, F. C., Zhao, W. H., & Feng, M. (2016). SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation. Oncology Reports, 35(3), 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  162. Xie, X., Zhang, H., Gao, P., Wang, L., Zhang, A., Xie, S., et al. (2012). Overexpression of SIRT6 in porcine fetal fibroblasts attenuates cytotoxicity and premature senescence caused by D-galactose and tert-butylhydroperoxide. DNA and Cell Biology, 31(5), 745–752.

    Article  CAS  PubMed  Google Scholar 

  163. Saiyang, X., Deng, W., & Qizhu, T. (2020). Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacological Research, 163, 105214.

    Article  PubMed  Google Scholar 

  164. Xu, S., Yin, M., Koroleva, M., Mastrangelo, M. A., Zhang, W., Bai, P., et al. (2016). SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging, 8(5), 1064–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sosnowska, B., Mazidi, M., Penson, P., Gluba-Brzózka, A., Rysz, J., & Banach, M. (2017). The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 265, 275–282.

    Article  CAS  PubMed  Google Scholar 

  166. Bulbulia, R., & Armitage, J. (2012). LDL cholesterol targets – how low to go? Current Opinion in Lipidology, 23(4), 265–270.

    Article  CAS  PubMed  Google Scholar 

  167. Marais, D. A., Blom, D. J., Petrides, F., Gouëffic, Y., & Lambert, G. (2012). Proprotein convertase subtilisin/kexin type 9 inhibition. Current Opinion in Lipidology, 23(6), 511–517.

    Article  CAS  PubMed  Google Scholar 

  168. He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., et al. (2017). SIRT 6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox- LDL condition. FEBS Journal, 284(9), 1324–1337.

    Article  CAS  PubMed  Google Scholar 

  169. Tao, R., Xiong, X., DePinho, R. A., Deng, C. X., & Dong, X. C. (2013). Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. Journal of Lipid Research, 54(10), 2745–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kim, H. S., Xiao, C., Wang, R. H., Lahusen, T., Xu, X., Vassilopoulos, A., et al. (2010). Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metabolism, 12(3), 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Takasaka, N., Araya, J., Hara, H., Ito, S., Kobayashi, K., Kurita, Y., et al. (2014). Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. The Journal of Immunology, 192(3), 958–968.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, Z. Z., Cheng, Y. W., Jin, H. Y., Chang, Q., Shang, Q. H., Xu, Y. L., et al. (2017). The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 8(42), 72302–72314.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Li, Y., Meng, X., Wang, W., Liu, F., Hao, Z., Yang, Y., et al. (2017). Cardioprotective effects of SIRT6 in a mouse model of transverse aortic constriction-induced heart failure. Frontiers in Physiology, 13(8), 394.

    Article  Google Scholar 

  174. Matsushima, S., & Sadoshima, J. (2015). The role of sirtuins in cardiac disease. American Journal of Physiology-Heart and Circulatory Physiology, 309(9), H1375–H1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Van Meter, M., Simon, M., Tombline, G., May, A., Morello, T. D., Hubbard, B. P., et al. (2016). JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Reports, 16(10), 2641–2650.

    Article  PubMed  Google Scholar 

  176. D’Onofrio, N., Servillo, L., & Balestrieri, M. L. (2018). SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxidants & Redox Signaling, 28(8), 711–732.

    Article  Google Scholar 

  177. Jung, S. M., Hung, C. M., Hildebrand, S. R., Sanchez-Gurmaches, J., Martinez-Pastor, B., Gengatharan, J. M., et al. (2019). Non-canonical mTORC2 signaling regulates brown adipocyte lipid catabolism through SIRT6-FoxO1. Molecular Cell, 75(4), 807-822.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Khan, D., Sarikhani, M., Dasgupta, S., Maniyadath, B., Pandit, A. S., Mishra, S., et al. (2018). SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart. Journal of Cellular Physiology, 233(7), 5478–5489.

    Article  CAS  PubMed  Google Scholar 

  179. Wang, X. X., Wang, X. L., Tong, M. M., Gan, L., Chen, H., Wu, S. S., et al. (2016). SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Research in Cardiology. https://doi.org/10.1007/s00395-016-0531-z

    Article  PubMed  PubMed Central  Google Scholar 

  180. Naiman, S., Huynh, F. K., Gil, R., Glick, Y., Shahar, Y., Touitou, N., et al. (2019). SIRT6 promotes hepatic beta-oxidation via activation of PPARα. Cell Reports, 29(12), 4127-4143.e8.

    Article  CAS  PubMed  Google Scholar 

  181. Guo, J., Wang, Z., Wu, J., Liu, M., Li, M., Sun, Y., et al. (2019). Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circulation Research, 124(10), 1448–1461.

    Article  CAS  PubMed  Google Scholar 

  182. Masri, S., & Sassone-Corsi, P. (2014). Sirtuins and the circadian clock: Bridging chromatin and metabolism. Science Signaling, 7(342), re6.

    Article  PubMed  Google Scholar 

  183. Bugger, H., Witt, C. N., & Bode, C. (2016). Mitochondrial sirtuins in the heart. Heart Failure Reviews, 21(5), 519–528.

    Article  CAS  PubMed  Google Scholar 

  184. Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer, 15(10), 608–624.

    Article  CAS  PubMed  Google Scholar 

  185. Madhavi, Y. V., Gaikwad, N., Yerra, V. G., Kalvala, A. K., Nanduri, S., & Kumar, A. (2019). Targeting AMPK in diabetes and diabetic complications: energy homeostasis. Autophagy and Mitochondrial Health CMC, 26(27), 5207–5229.

    CAS  Google Scholar 

  186. Palikaras, K., & Tavernarakis, N. (2014). Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 56, 182–188.

    Article  CAS  PubMed  Google Scholar 

  187. Wu, S., & Zou, M. H. (2020). AMPK, mitochondrial function, and cardiovascular disease. International Journal of Molecular Science, 21(14), 4987.

    Article  CAS  Google Scholar 

  188. Myers, R. W., Guan, H. P., Ehrhart, J., Petrov, A., Prahalada, S., Tozzo, E., et al. (2017). Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science, 357(6350), 507–511.

    Article  CAS  PubMed  Google Scholar 

  189. Anderson, K. A., Madsen, A. S., Olsen, C. A., & Hirschey, M. D. (2017). Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica et Biophysica Acta, Bioenergetics, 1858(12), 991–998.

    Article  CAS  PubMed  Google Scholar 

  190. Cai, Y., Yu, S. S., Chen, S. R., Pi, R. B., Gao, S., Li, H., et al. (2012). Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Letters, 586(6), 866–874.

    Article  CAS  PubMed  Google Scholar 

  191. Pillai, V., Samant, S. A., Gupta, M., & Gupta, M. P. (2019). Sirt6 protects the heart from aging-induced cardiac hypertrophy by enhancing mitochondrial fitness. Circulation, 140, A11897.

    Google Scholar 

  192. Acin-Perez, R., Lechuga-Vieco, A. V., Mar Muñoz, M. D., Nieto-Arellano, R., Torroja, C., Sánchez-Cabo, F., et al. (2018). Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 10(434), eaan4935.

    Article  PubMed  Google Scholar 

  193. Han, J. (2017). Mitochondrial DNA mitochondrial dysfunction and cardiac manifestations. Frontiers in Bioscience, 22(7), 1177–1194.

    Article  Google Scholar 

  194. Yu, S., Cai, Y., Ye, J., Pi, R., Chen, S., Liu, P., et al. (2013). Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity. British Journal of Pharmacology, 168(1), 117–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brito, V. B., Nascimento, L. V. M., Nunes, R. B., Moura, D. J., Lago, P. D., & Saffi, J. (2016). Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology, 368–369, 46–57.

    Article  PubMed  Google Scholar 

  196. Rocha, B., Rodrigues, A. R., Tomada, I., Martins, M. J., Guimarães, J. T., Gouveia, A. M., et al. (2018). Energy restriction, exercise and atorvastatin treatment improve endothelial dysfunction and inhibit miRNA-155 in the erectile tissue of the aged rat. Nutrition & Metabolism (London), 15(1), 28.

    Article  CAS  Google Scholar 

  197. Koltai, E., Szabo, Z., Atalay, M., Boldogh, I., Naito, H., Goto, S., et al. (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mechanisms of Ageing and Development., 131(1), 21–28.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, N., Li, Z., Mu, W., Li, L., Liang, Y., Lu, M., et al. (2016). Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle, 15(7), 1009–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kitada, M., Ogura, Y., Monno, I., & Koya, D. (2019). Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 10, 1–12.

    Article  Google Scholar 

  200. Yasuda, M., Wilson, D. R., Fugmann, S. D., & Moaddel, R. (2011). Synthesis and characterization of SIRT6 protein coated magnetic beads: Identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Analytical Chemistry, 83(19), 7400–7407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chang, Y.-L., et al. (2016). An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3. Organic & Biomolecular Chemistry, 14(7), 2186–2190.

    Article  Google Scholar 

  202. Gertz, M., Fischer, F., Nguyen, G. T. T., Lakshminarasimhan, M., Schutkowski, M., Weyand, M., et al. (2013). Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proceedings of the National Academy of Sciences, 110(30), E2772–E2781.

    Article  CAS  Google Scholar 

  203. Kokkonen, P., Rahnasto-Rilla, M., Mellini, P., Jarho, E., Lahtela-Kakkonen, M., & Kokkola, T. (2014). Studying SIRT6 regulation using H3K56 based substrate and small molecules. European Journal of Pharmaceutical Sciences, 63, 71–76.

    Article  CAS  PubMed  Google Scholar 

  204. Singh, N., Ravichandran, S., Norton, D. D., Fugmann, S. D., & Moaddel, R. (2013). Synthesis and characterization of a SIRT6 open tubular column: Predicting deacetylation activity using frontal chromatography. Analytical Biochemistry, 436(2), 78–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rahnasto-Rilla, M., Kokkola, T., Jarho, E., Lahtela-Kakkonen, M., & Moaddel, R. (2016). N-Acylethanolamines bind to SIRT6. ChemBioChem, 17(1), 77–81.

    Article  CAS  PubMed  Google Scholar 

  206. Sociali, G., Galeno, L., Parenti, M. D., Grozio, A., Bauer, I., Passalacqua, M., et al. (2015). Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry., 102, 530–539.

    Article  CAS  PubMed  Google Scholar 

  207. Yang, S. J., Choi, J. M., Chae, S. W., Kim, W. J., Park, S. E., Rhee, E. J., et al. (2011). Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases Sirt6 expression and ameliorates hepatic steatosis in rats. PLoS ONE, 6(2), e17057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, Y., Li, X., Cole, A., McLaughlin, S., & Du, W. (2018). Icariin improves Fanconi anemia hematopoietic stem cell function through SIRT6-mediated NF-kappa B inhibition. Cell Cycle, 17(3), 367–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chen, Y., Sun, T., Wu, J., Kalionis, B., Zhang, C., Yuan, D., et al. (2015). Icariin intervenes in cardiac inflammaging through upregulation of SIRT6 enzyme activity and inhibition of the NF-kappa B pathway. BioMed Research International, 2015, 1–12.

    Google Scholar 

  210. Tang, Y. L., Zhou, Y., Wang, Y. P., Wang, J. W., & Ding, J. C. (2015). SIRT6/NF-κB signaling axis in ginsenoside Rg1-delayed hematopoietic stem/progenitor cell senescence. International Journal of Clinical and Experimental Pathology, 8(5), 5591–5596.

    PubMed  PubMed Central  Google Scholar 

  211. D’Onofrio, N., Servillo, L., Giovane, A., Casale, R., Vitiello, M., Marfella, R., et al. (2016). Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radical Biology and Medicine, 96, 211–222.

    Article  PubMed  Google Scholar 

  212. Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, 30(8), 1265–1286.

    Article  CAS  PubMed  Google Scholar 

  213. Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., et al. (2018). Natural polyphenols as sirtuin 6 modulators. Scientific Reports, 8(1), 1–11.

    Article  CAS  Google Scholar 

  214. You, W., & Steegborn, C. (2020). Structural basis for activation of human sirtuin 6 by fluvastatin. ACS Medicinal Chemistry Letters, 11(11), 2285–2289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gertz, M., Fischer, F., Nguyen, G. T. T., Lakshminarasimhan, M., Schutkowski, M., Weyand, M., et al. (2013). Ex-527 inhibits Sirtuins by exploiting their unique NAD + -dependent deacetylation mechanism. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1303628110

    Article  Google Scholar 

Download references

Acknowledgements

We thank Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India for providing access to the library and all other facilities.

Author information

Authors and Affiliations

Authors

Contributions

Authors Divya KP, Anu Ranjana PV, Krupa Thankam George, and Fathima Beegum Wrote the MS. Authors Gautam Kumar and Divya KP draw the diagrams. Authors Nawjot Kanwar, Nitesh Kumar, and Gautam Kumar reviewed and edited the MS. Authors K. Nandakumar and Abhinav Kanwal conceptualized the MS and did a final review of the MS.

Corresponding authors

Correspondence to K. Nandakumar or Abhinav Kanwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Yajing Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, K.P., Kanwar, N., Anuranjana, P.V. et al. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs. Cardiovasc Toxicol 24, 598–621 (2024). https://doi.org/10.1007/s12012-024-09858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09858-1

Keywords

Navigation