Skip to main content

Advertisement

Log in

Ternary Cobalt (II)-Metformin-Glycine/Histidine/Proline Complexes: Multispectroscopic DNA, HSA, and BSA Interaction and Cytotoxicity Studies

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The synthesized water-soluble ternary complexes [Co(met)(gly)(Cl)2] (1), [Co(met)(hist)(Cl)2] (2), and [Co(met)(pro)(Cl)2] (3), (met = metformin, gly = glycine, hist = histidine, and pro = proline) were evaluated using spectro-analytical techniques, and the stereochemistry of the complexes was determined to be octahedral. UV–Vis absorption, competitive DNA-binding experiments using ethidium bromide (EB) by fluorescence, fluorescence emission studies, viscosity studies, and gel electrophoresis techniques were all employed to explore the binding characteristics of the cobalt (II) complexes with CT-DNA and groove-binding mechanism established. The salt-dependent association of the complexes to CT-DNA was investigated using UV–Vis spectrophotometric analysis. The association of the cobalt (II) complexes with BSA and HSA was explored by utilizing UV–Vis absorption and fluorescence spectroscopy approaches. The findings show that the complexes exhibit adequate capacity to quench BSA and HSA fluorescence and that the binding response is mostly a static quenching mechanism. The cytotoxicity of the complexes has also been appraised with the human breast adenocarcinoma cell lines (MCF-7) and (MDA-MB-231) by utilizing the MTT assay. For each cell line, the IC50 values were computed. In both cell lines, all the complexes were active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data and materials are available on request.

References

  1. Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114(8):4540–4563. https://doi.org/10.1021/cr400460s

    Article  CAS  PubMed  Google Scholar 

  2. Abu-el-Wafa SM, El-Ries MA, Ahmed FH (1987) Formation of metformin complexes with some transition metal ions: their biological activity. Inorg Chim Acta 136(3):127–131. https://doi.org/10.1016/S0020-1693(00)81143-3

    Article  CAS  Google Scholar 

  3. Sharma SS, Ramani JV, Dalwadi DP, Bhalodia JJ, Patel NK, Patel DD et al (2011) New ternary transition metal complexes of 2-{[(2-aminophenyl)imino] methyl}phenol and metformin: synthesis, characterization and antimicrobial activity. E-J Chem. 8:723491. https://doi.org/10.1155/2011/723491

    Article  Google Scholar 

  4. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I (2018) Metformin as an anticancer agent. Trends Pharmacol Sci 39(10):867–878. https://doi.org/10.1016/j.tips.2018.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renfrew AK, O’Neill ES, Hambley TW, New EJ (2018) Harnessing the properties of cobalt coordination complexes for biological application. Coord Chem Rev 375:221–233. https://doi.org/10.1016/j.ccr.2017.11.027

    Article  CAS  Google Scholar 

  6. Wyrzykowski D, Kloska A, Pranczk J, Szczepańska A, Tesmar A, Jacewicz D et al (2015) Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions. Biol Trace Elem Res 164(1):139–149. https://doi.org/10.1007/s12011-014-0170-x

    Article  CAS  PubMed  Google Scholar 

  7. Piotrowska-Kirschling A, Drzeżdżon J, Kloska A, Wyrzykowski D, Chmurzyński L, Jacewicz D (2018) Antioxidant and cytoprotective activity of oxydiacetate complexes of cobalt(II) and nickel(II) with 1,10-phenantroline and 2,2′-bipyridine. Biol Trace Elem Res 185(1):244–251. https://doi.org/10.1007/s12011-018-1243-z

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y-Z, Li H-R, Dai J, Chen W-J, Zhang J, Liu Y (2010) Spectroscopic studies on the binding of cobalt(II) 1,10-phenanthroline complex to bovine serum albumin. Biol Trace Elem Res 135(1):136–152. https://doi.org/10.1007/s12011-009-8502-y

    Article  CAS  PubMed  Google Scholar 

  9. Kostelidou A, Perdih F, Kljun J, Dimou F, Kalogiannis S, Turel I, et al (2022) Metal(II) complexes of the fluoroquinolone fleroxacin: synthesis, characterization and biological profile. 14(5):898.

  10. Protogeraki C, Andreadou EG, Perdih F, Turel I, Pantazaki AA, Psomas G (2014) Cobalt(II) complexes with the antimicrobial drug enrofloxacin: structure, antimicrobial activity, DNA- and albumin-binding. Eur J Med Chem 86:189–201. https://doi.org/10.1016/j.ejmech.2014.08.043

    Article  CAS  PubMed  Google Scholar 

  11. Kouris E, Kalogiannis S, Perdih F, Turel I, Psomas G (2016) Cobalt(II) complexes of sparfloxacin: characterization, structure, antimicrobial activity and interaction with DNA and albumins. J Inorg Biochem 163:18–27. https://doi.org/10.1016/j.jinorgbio.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Bordbar M, Tabatabaee M, Alizadeh-Nouqi M, Mehri-Lighvan Z, Khavasi HR, YeganehFaal A et al (2016) Synthesis, characterization, cytotoxic activity and DNA-binding studies of cobalt (II) mixed-ligand complex containing pyridine-2,6-dicarboxylate ion and 2-aminopyrimidine. J Iranian Chem Soc 13(6):1125–1132. https://doi.org/10.1007/s13738-016-0826-x

    Article  CAS  Google Scholar 

  13. Biancalana L, Bortoluzzi M, Ferretti E, Hayatifar M, Marchetti F, Pampaloni G et al (2017) The reactions of α-amino acids and α-amino acid esters with high valent transition metal halides: synthesis of coordination complexes, activation processes and stabilization of α-ammonium acylchloride cations. RSC Adv 7(17):10158–10174. https://doi.org/10.1039/c7ra00073a

    Article  CAS  Google Scholar 

  14. Sorenson JRJ (1998) Copper complexes for therapy of cancer and autoimmune diseases. In: Rainsford KD, Milanino R, Sorenson JRJ, Velo GP (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Netherlands, Dordrecht, pp 113–124

    Chapter  Google Scholar 

  15. Faten M, Elalla E, Shalaby sIA. (2009) Antioxidant activity of extract and semi-purified fractions of marine red macroalga, Gracilaria Verrucosa. 3.

  16. Gopala Krishna AG, Prabhakar JV (1994) Antioxidant efficacy of amino acids in methyl linoleate at different relative humidities. J Am Oil Chem Soc 71(6):645–647. https://doi.org/10.1007/BF02540594

    Article  Google Scholar 

  17. Selwin JR, Sivasankaran NM (2010) Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand. Arab J Chem 3(4):195–204. https://doi.org/10.1016/j.arabjc.2010.05.001

    Article  CAS  Google Scholar 

  18. Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadeh H (2014) DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochim Acta A Mol Biomol Spectrosc 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  19. Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Trans Med 2(6):7

    Google Scholar 

  20. Zi F, Zi H, Li Y, He J, Shi Q, Cai Z (2018) Metformin and cancer: an existing drug for cancer prevention and therapy (Review). Oncol Lett 15(1):683–690. https://doi.org/10.3892/ol.2017.7412

    Article  CAS  PubMed  Google Scholar 

  21. Benjamin D, Robay D, Hindupur S, Pohlmann J, Colombi M, El-Shemerly M et al (2018) Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep 25:3047-3058.e3044. https://doi.org/10.1016/j.celrep.2018.11.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu H-K, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44(5):349–359. https://doi.org/10.1021/ar100140e

    Article  CAS  Google Scholar 

  23. Leung HMM, Harada T, Kee WT (2013) Delivery of curcumin and medicinal effects of the copper(II)-curcumin complexes. Curr Pharm Des 19(11):2070–2083. https://doi.org/10.2174/1381612811319110008

    Article  CAS  PubMed  Google Scholar 

  24. Sigman DS, Mazumder A, Perrin DM (1993) Chemical nucleases. Chem Rev 93(6):2295–2316. https://doi.org/10.1021/cr00022a011

    Article  CAS  Google Scholar 

  25. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin−DNA adducts. Chem Rev 99(9):2467–2498. https://doi.org/10.1021/cr980421n

    Article  CAS  PubMed  Google Scholar 

  26. Shao J, Ma Z-Y, Li A, Liu Y-H, Xie C-Z, Qiang Z-Y et al (2014) Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity. J Inorg Biochem 136:13–23. https://doi.org/10.1016/j.jinorgbio.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  27. Alagesan M, Bhuvanesh NSP, Dharmaraj N (2014) An investigation on new ruthenium(ii) hydrazone complexes as anticancer agents and their interaction with biomolecules. Dalton Trans 43(16):6087–6099. https://doi.org/10.1039/c3dt51949j

    Article  CAS  PubMed  Google Scholar 

  28. van der Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24(4):300–307. https://doi.org/10.2133/dmpk.24.300

    Article  PubMed  Google Scholar 

  29. Lu J, Stewart Alan J, Sadler Peter J, Pinheiro Teresa JT, Blindauer CA (2008) Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans 36(6):1317–1321. https://doi.org/10.1042/bst0361317

    Article  CAS  Google Scholar 

  30. Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A (2018) Alteration of human serum albumin binding properties induced by modifications: a review. Spectrochim Acta A Mol Biomol Spectrosc 188:675–683. https://doi.org/10.1016/j.saa.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  31. Yousefi R, Aghevlian S, Mokhtari F, Samouei H, Rashidi M, Nabavizadeh SM et al (2012) The anticancer activity and HSA binding properties of the structurally related platinum (II) complexes. Appl Biochem Biotech 167(4):861–872. https://doi.org/10.1007/s12010-012-9733-5

    Article  CAS  Google Scholar 

  32. Ali I, Wani WA, Saleem K (2013) Empirical formulae to molecular structures of metal complexes by molar conductance. Syn React Inorg Met Org 43(9):1162–1170. https://doi.org/10.1080/15533174.2012.756898

    Article  CAS  Google Scholar 

  33. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. B, John Wiley & Sons, New York.

  34. Lever ABP (1997) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  35. Muniyandi V, Pravin N, Subbaraj P, Raman N (2016) Persistent DNA binding, cleavage performance and eco-friendly catalytic nature of novel complexes having 2-aminobenzophenone precursor. J Photochem Photobiol B 156:11–21. https://doi.org/10.1016/j.jphotobiol.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  36. Jadhav SM, Shelke VA, Shankarwar SG, Munde AS, Chondhekar TK (2014) Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand. J Saudi Chem Soc 18(1):27–34. https://doi.org/10.1016/j.jscs.2011.05.010

    Article  CAS  Google Scholar 

  37. Figgis BN (1986) Introduction to ligand fields. John Wiley & Sons, New York

    Google Scholar 

  38. Kavitha N, Anantha Lakshmi PV (2017) Synthesis, characterization and thermogravimetric analysis of Co(II), Ni(II), Cu(II) and Zn(II) complexes supported by ONNO tetradentate Schiff base ligand derived from hydrazino benzoxazine. J Saudi Chem Soc 21:S457–S466. https://doi.org/10.1016/j.jscs.2015.01.003

    Article  CAS  Google Scholar 

  39. Shahabadi N, Abbasi AR, Moshtkob A, Hadidi S (2020) Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J Biomol Struct Dyn 38(10):2837–2848. https://doi.org/10.1080/07391102.2019.1658643

    Article  CAS  PubMed  Google Scholar 

  40. Mi Y-X, Wang S, Xu X-X, Zhao H-Q, Zheng Z-B, Zhao X-L (2019) A promising DNA groove binder and photocleaver based on a dinuclear ruthenium(II) complex. J Chil Chem Soc 64:4392–4398. https://doi.org/10.4067/s0717-97072019000104392

    Article  CAS  Google Scholar 

  41. Mirzaei-Kalar Z (2018) In vitro binding interaction of atorvastatin with calf thymus DNA: multispectroscopic, gel electrophoresis and molecular docking studies. J Pharm Biomed Anal 161:101–109. https://doi.org/10.1016/j.jpba.2018.08.033

    Article  CAS  PubMed  Google Scholar 

  42. Gabra N, Mustafa B, Praveen kumar DY, Devi S, Shilpa M, laxma reddy K et al (2014) DNA-binding and cleavage, cytotoxicity properties of Ru(II) complexes with 2-(4′-chloro-phenyl) imidazo[4,5-f][1,10]phenanthroline, ligand and their “light switch” on–off effect. Med Chem Res. 23:224–235. https://doi.org/10.1007/s00044-013-0617-1

    Article  CAS  Google Scholar 

  43. Mudasir M, Yoshioka N, Inoue H (2008) DNA binding of iron(II)-phenanthroline complexes: effect of methyl substitution on thermodynamic parameters. Zeitschrift fur Naturforschung B 63:37–46. https://doi.org/10.1515/znb-2008-0106

    Article  CAS  Google Scholar 

  44. Mudasir WK, Tri Wahyuni E, Yoshioka N, Inoue H (2006) Salt-dependent binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and dipyrido[3,2-a:2′,3′-c]phenazine to calf thymus DNA. Biophys Chem 121(1):44–50. https://doi.org/10.1016/j.bpc.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  45. Shekhar B, Rajeshwari K, Jayasree B, Anantha Lakshmi PV (2022) Novel metformin complexes: geometry optimization, non-isothermal kinetic parameters, DNA binding, on–off light switching and docking studies. Appl Organomet Chem. 36(4):e6601. https://doi.org/10.1002/aoc.6601

    Article  CAS  Google Scholar 

  46. Shekhar B, Vasantha P, Sathish Kumar B, Anantha Lakshmi PV, Ravi Kumar V, Satyanarayana S (2019) Chromium-metformin ternary complexes: thermal, DNA interaction and docking studies. Appl Organomet Chem 33(9):e5086. https://doi.org/10.1002/aoc.5086

    Article  CAS  Google Scholar 

  47. Shahabadi N, Mohammadi S (2012) Synthesis characterization and DNA interaction studies of a new Zn(II) complex containing different dinitrogen aromatic ligands. Bioinorg Chem Appl 2012:571913. https://doi.org/10.1155/2012/571913

    Article  CAS  PubMed Central  Google Scholar 

  48. Reddy MR, Reddy PV, Kumar YP, Srishailam A, Nambigari N, Satyanarayana S (2014) Synthesis, characterization, DNA binding, light switch “on and off”, docking studies and cytotoxicity, of ruthenium(II) and cobalt(III) polypyridyl complexes. J Fluor 24(3):803–817. https://doi.org/10.1007/s10895-014-1355-6

    Article  CAS  Google Scholar 

  49. Shahabadi N, Heidari L (2012) Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods. Spectrochim Acta A Mol Biomol Spectr 97:406–410. https://doi.org/10.1016/j.saa.2012.06.044

    Article  CAS  Google Scholar 

  50. Vasantha P, Kumar BS, Shekhar B, Anantha Lakshmi PV (2018) Copper-metformin ternary complexes: thermal, photochemosensitivity and molecular docking studies. Mat Sci Eng C 90:621–633. https://doi.org/10.1016/j.msec.2018.04.052

    Article  CAS  Google Scholar 

  51. Chaurasia M, Tomar D, Chandra S (2019) BSA binding studies of Co(II), Ni(II) and Cu(II) metal complexes of Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde and 2-amino-6-methylbenzothiazole. Egypt J Chem 62(2):357–372. https://doi.org/10.21608/ejchem.2018.4907.1434

    Article  Google Scholar 

  52. Gomathi SV, Vinod D, Mahalakshmi A, Alamelu M, Kumaresan G, Ramaraj R et al (2014) Interaction of oxovanadium(iv)–salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Trans 43(8):3260–3272. https://doi.org/10.1039/c3dt52505h

    Article  CAS  Google Scholar 

  53. Maikoo S, Chakraborty A, Vukea N, Dingle LMK, Samson WJ, de la Mare J-A et al (2021) Ruthenium complexes with mono- or bis-heterocyclic chelates: DNA/BSA binding, antioxidant and anticancer studies. J Biomol Struct Dyn 39(11):4077–4088. https://doi.org/10.1080/07391102.2020.1775126

    Article  CAS  PubMed  Google Scholar 

  54. Theetharappan M, Subha L, Balakrishnan C, Neelakantan MA (2017) Binding interactions of mixed ligand copper(II) amino acid Schiff base complexes with biological targets: spectroscopic evaluation and molecular docking. Appl Organomet Chem 31(10):e3713. https://doi.org/10.1002/aoc.3713

    Article  CAS  Google Scholar 

  55. Topala T, Bodoki A, Oprean L, Oprean R (2014) Bovine serum albumin interactions with metal complexes. Clujul Med 87(4):215–219. https://doi.org/10.15386/cjmed-357

    Article  PubMed  PubMed Central  Google Scholar 

  56. Anupama B, Aruna A, Manga V, Sivan S, Sagar MV, Chandrashekar R (2017) Synthesis, spectral characterization, DNA/ protein binding, DNA cleavage, cytotoxicity, antioxidative and molecular docking studies of Cu(II) complexes containing Schiff base-bpy/phen ligands. J Fluor 27(3):953–965. https://doi.org/10.1007/s10895-017-2030-5

    Article  CAS  Google Scholar 

  57. Abeydeera N, Perera IC, Perera T (2018) Synthesis, characterization, and BSA-binding studies novel sulfonated zinc-triazine complexes. Bioinorg Chem Appl 2018:7563820. https://doi.org/10.1155/2018/7563820

    Article  PubMed  Google Scholar 

  58. Shahabadi N, Amiri S, Taherpour A (2019) Human serum albumin binding studies of a new platinum(IV) complex containing the drug pregabalin: experimental and computational methods. J Coord Chem 72(4):600–618. https://doi.org/10.1080/00958972.2019.1568419

    Article  CAS  Google Scholar 

  59. Shahabadi N, Bazvandi B, Taherpour A (2017) Synthesis, structural determination and HSA interaction studies of a new water-soluble Cu(II) complex derived from 1,10-phenanthroline and ranitidine drug. J Coord Chem 70(18):3186–3198. https://doi.org/10.1080/00958972.2017.1380195

    Article  CAS  Google Scholar 

  60. Michon J, Frelon S, Garnier C, Coppin F (2010) Determinations of uranium(VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J Fluores 20(2):581–590. https://doi.org/10.1007/s10895-009-0587-3

    Article  CAS  Google Scholar 

  61. Yasmeen S, Riyazuddeen, Rabbani G (2016) Calorimetric and spectroscopic binding studies of amoxicillin with human serum albumin. J Therm Anal Calorim 127 https://doi.org/10.1007/s10973-016-5555-y.

  62. Yousefi R, Taheri-Kafrani A, Nabavizadeh SM, Pouryasin Z, Shahsavani MB, Khoshaman K et al (2015) The binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands. Mol Biol Res Commun 4(4):167–179

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yasmeen S, Riyazuddeen Qais FA (2017) Unraveling the thermodynamics, binding mechanism and conformational changes of HSA with chromolyn sodium: multispecroscopy, isothermal titration calorimetry and molecular docking studies. Int J Biol Macromol 105:92–102. https://doi.org/10.1016/j.ijbiomac.2017.06.122

    Article  CAS  PubMed  Google Scholar 

  64. Hazra M, Dolai T, Giri S, Patra A, Dey SK (2017) Synthesis of biologically active cadmium (II) complex with tridentate N2O donor Schiff base: DFT study, binding mechanism of serum albumins (bovine, human) and fluorescent nanowires. J Saudi Chem Soc 21:S445–S456. https://doi.org/10.1016/j.jscs.2014.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology, India [no. SR/PURSE phase 2/32 (G)] and the University Grants Commission, India [UPE-FAR], for providing financial assistance to carry out this work.

Funding

This work was supported by the Department of Science and Technology, India (no. SR/PURSE phase 2/32 (G)) and the University Grants Commission, India [UPE-FAR].

Author information

Authors and Affiliations

Authors

Contributions

Jayasri B. performed the experiments, analyzed the data, and prepared the manuscript. Rajeshwari K. helped in designing the experiments. Vasantha P. helped in analyzing the data. Anantha Lakshmi P.V. supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to P. V. Anantha Lakshmi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasri, B., Rajeshwari, K., Vasantha, P. et al. Ternary Cobalt (II)-Metformin-Glycine/Histidine/Proline Complexes: Multispectroscopic DNA, HSA, and BSA Interaction and Cytotoxicity Studies. Biol Trace Elem Res 201, 5481–5499 (2023). https://doi.org/10.1007/s12011-023-03606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03606-2

Keywords

Navigation