Skip to main content

Advertisement

Log in

Three anticancer Pt complexes with glycine derivatives: synthesis, bioactivity on MCF-7 cell line, ADME prediction, DFT, MEP, and molecular docking

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

For investigating reduction of side effects of commercial anticancer drugs, such as cisplatin, three new platinum complexes with glycine derivatives and the formula of [Pt(R-amine)2(R-gly)]NO3 were synthesized where R-amine is propylamine, isopentylamine, and tertpentylamine and R-gly is propylglycine, isopentylglycine, and tertpentylglycine, which were characterized by spectroscopic methods, such as ultraviolet–visible, infrared, and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The in-vitro cytotoxicity of these water-soluble complexes and cisplatin as a controller was assessed against MCF-7 cell line by MTT assay. The 50% inhibitory concentration values showed that the inhibitory effect of propyl derivative was better than the other systems. According to solubility of these compounds in water and also comparing the results of assessing adsorption, distribution, metabolism, and excretion, these compounds can be considered as drug-like molecules and oral medication. Given the density functional theory data, such as electronegativity, nucleophilicity, additional electronic charges, and global softness, anticancer properties of the synthesized complexes were almost similar and predominantly more than the cisplatin. DNA binding modes were evaluated by experimental circular dichroism (CD) spectroscopy, and also theoretical study of molecular docking. CD spectra showed a decrease in the intensity of the positive band and an increase in the negative band indicating formation of DNA-complex electrostatic interaction for positively charged synthesized complexes. CD spectra indicated conversion of B-DNA into A-DNA form via electrostatic interaction for positively charged propyl complex at high concentration. Results of studying molecular docking showed that hydrogen bonding is more effective than other interactions, such as electrostatic and covalent interactions, especially for bulky systems. In this regard, glycine derivatives may reduce the side effects of Pt-drugs in treatment of cancer.

Graphical abstract

Three new anticancer Pt(II) complexes were synthesized with glycine derivatives. In vitro cytotoxicity effects were tested against the human breast cancer cell line of MCF-7. Moreover, the modes of DNA binding with synthesized compounds were investigated using Circular dichroism spectra, ADME prediction, DFT, MEP, and molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MCF-7:

Human breast cell line

Isopentylamine:

3-Methyl-butylamine

Tertpentylamine:

1,1-Dimethyl Propylamine

Gly:

Glycine

CD:

Circular dichroism

MD:

Molecular docking

DFT:

Density functional theory

MEP:

Molecular electrostatic potential

QCDs:

Quantum chemical descriptors

ADME:

Adsorption, distribution, metabolism, and excretion

IC50 :

50% Inhibitory concentration

References

  1. F. Safa Shams Abyaneh, M. Eslami Moghadam, M. Hossaini Sadr, A. Divsalar, J. Biomol. Struct. Dyn. 36(4), 893–905 (2018)

    Article  CAS  Google Scholar 

  2. W. Tian, L. He, Res. Chem. Intermed. 41, 8725–8733 (2015)

    Article  CAS  Google Scholar 

  3. Q.K. Wang, S.P. Pu, Y.N. Li, J. He, L.M. Zhou, J. Peng, T.J. Huang, L.M. Liu, Adv. Mat. Res. 554, 1645–1649 (2012)

    Google Scholar 

  4. Z. Jinchao, L. Li, L. Wang, F. Zhang, X. Li, Eur. J. Med. Chem. 45(11), 5337–5344 (2010)

    Article  Google Scholar 

  5. W. Katarzyna, J. Błasiak, Acta Biochim. Pol. 49(3), 583–596 (2002)

    Article  Google Scholar 

  6. T.J. Sabo, V.M. Dinovic, G.N. Kaluderovic, T.P. Stanojkovic, G.A. Bogdanovic, Z.D. Juranic, Inorganica Chim. Acta. 358, 2239–2245 (2005)

    Article  CAS  Google Scholar 

  7. A.R. Khokhar, Y. Deng, S. Al-Baker, M. Yoshida, Z.H. Siddik, J. Inorg. Biochem. 51, 677–687 (1993)

    Article  CAS  Google Scholar 

  8. D. Ajloo, M. Eslami Moghadam, K. Ghadimi, M. Ghadamgahi, A.A. Saboury, A. Divsalar, M. SheikhMohammadi, K. Yousefi, Inorganica Chim. Acta. 430, 144–160 (2015)

    Article  CAS  Google Scholar 

  9. P. Lunetti, A. Romano, C. Carrisi, D. Antonucci, T. Verri, G.E. De Benedetto, V. Dolce, F.P. Fanizzi, M. Benedetti, L. Capobianco, ChemistrySelect. 1, 4633–4637 (2016)

    Article  CAS  Google Scholar 

  10. S. Mukherjee, I. Mitra, P. Das, B. Misini, W. Linert, S.C. Moi, ChemistrySelect. 3, 3871–3885 (2018)

    Article  CAS  Google Scholar 

  11. M. Kantoury, M. Eslami Moghadam, A.A. Tarlani, A. Divsalar, Chem. Biol. Drug. Des. 88(1), 76–87 (2016)

    Article  CAS  Google Scholar 

  12. S. Shahraki, H. Mansouri-Torshizi, A. Heydari, A. Ghahghaei, A. Divsalar, A.A. Saboury, H. Ghaemi, M. Doostkami, S. Zareian, Iran J. Sci. Technol. Trans. A Sci. 39(2), 187–198 (2015)

    Google Scholar 

  13. A. Muscella, C. Vetrugno, F.P. Fanizzi, C. Manca, S.A. De Pascali, S. Marsigliante, Cell Death Dis. 5(8), e1388 (2014)

    Article  CAS  Google Scholar 

  14. I. Mitra, S. Mukherjee, V.P. Reddy, S. Dasgupta, J.C. Bose, S. Mukherjee, W. Linert, SCh. Moi, RSC Adv. 6, 76600–76613 (2016)

    Article  CAS  Google Scholar 

  15. K. Choroba, B. Machura, L.R. Raposo, J.G. Małecki, S. Kula, M. Pająk, K. Erfurt, A.M. Maroń, A.R. Fernandes, Dalton Trans. 48(34), 13081–13093 (2019)

    Article  CAS  Google Scholar 

  16. S. Hadian Rasanani, M. Eslami Moghadam, E. Soleimani, A. Divsalar, A. Tarlani, J. Coord. Chem. 70, 3769–3789 (2017)

    Article  CAS  Google Scholar 

  17. Y.-M. Chang, C.K.-M. Chen, M.-H. Hou, Int. J. Mol. Sci. 13(3), 3394–3413 (2012)

    Article  CAS  Google Scholar 

  18. R. D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford CT (2009).

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (Gaussian Inc, Wallingford CT, 2009).

    Google Scholar 

  20. K. Sayin, S.E. Kariper, M. Taştan, T.A. Sayin, D. Karakaş, J. Mol. Struct. 1176, 478–487 (2019)

    Article  CAS  Google Scholar 

  21. T. A. Yousef, S. F. Ahmed, O. A. El-Gammal, G. M. Abu El-Reash, Spectrochim. Acta A Mol. Biomol. Spectrosc. 146, 228–239 (2015)

  22. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7, 42717 (2017)

    Article  Google Scholar 

  23. A. Divsalar, A.A. Saboury, R. Yousefi, A.A. Moosavi-Movahedi, H. Mansoori-Torshizi, Int. J. Biol. Macromol. 40, 381–386 (2007)

    Article  CAS  Google Scholar 

  24. R.A. Condrate, K. Nakamoto, J. Chem. Phys. 42, 2590 (1965)

    Article  CAS  Google Scholar 

  25. H. Eshtiagh-Hosseini, M. Mirzaei, M. Biabani, V. Lippolis, M. Chahkandi, C. Bazzicalupi, CrystEngComm 15, 6752–6768 (2013)

    Article  CAS  Google Scholar 

  26. E. Efthimiadou, N. Katsaros, A. Karaliota, G. Psomas, Inorg. Chim. Acta 360, 4093–4102 (2007)

    Article  CAS  Google Scholar 

  27. K. Sayin, A. Ungordu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 147–155 (2018)

    Article  CAS  Google Scholar 

  28. K. Dysz, M. Malik-Gajewska, J. Banach, B. Morzyk-Ociepa, J. Mol. Struct. 1181, 444–454 (2019)

    Article  CAS  Google Scholar 

  29. O.A. El-Gammal, T.H. Rakha, H.M. Metwally, G.M. Abu El-Reash, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 144–156 (2014)

    Article  CAS  Google Scholar 

  30. S.K. Pandey, S. Pratap, M.K. Tiwari, G. Marverti, J.P. Jasinski, J. Mol. Struct. 1175, 963–970 (2019)

    Article  CAS  Google Scholar 

  31. N.R. Sheela, S. Muthu, S. Sampathkrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 237–251 (2014)

    Article  CAS  Google Scholar 

  32. S.A. Hosseini, M. Eslami Moghadam, M. Saeidifar, A.A. Saboury, J. Physiol. Pharmacol. 96(12), 1276–1285 (2018)

    Article  CAS  Google Scholar 

  33. O.A. Yousif, M.F. Mahdi, A.M.R. Raauf, J. Contemp. Med. Sci. 5(1), 41–50 (2019)

    CAS  Google Scholar 

  34. S.P. Singh, N.I. Singh, K. Nongalleima, P. Doley, C.B. Singh, D. Sahoo, Netw. Model Anal. Health Inform. Bioinform. 7, 1 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate being supported by this project by the Chemistry & Chemical Engineering Research Center of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Eslami Moghadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami Moghadam, M., Jafari, A., Kiani Khashandaragh, R. et al. Three anticancer Pt complexes with glycine derivatives: synthesis, bioactivity on MCF-7 cell line, ADME prediction, DFT, MEP, and molecular docking. J IRAN CHEM SOC 18, 1927–1939 (2021). https://doi.org/10.1007/s13738-021-02154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02154-7

Keywords

Navigation