Skip to main content
Log in

Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Ternary Cu(II) complexes [Cu(II)(L)(bpy)Cl] 1, [Cu(II)(L)(Phen)Cl] 2 [L = 2,3–dimethyl-1-phenyl-4(2 hydroxy-5-methyl benzylideneamino)-pyrazol-5-one, bpy = 2,2 bipyridine, phen =1,10 phenanthroline) were synthesized and characterized by elemental analyses, UV-Visible, FT-IR, ESR, Mass, thermogravimetric and SEM EDAX techniques. The complexes exhibit octahedral geometry. The interaction of the Cu(II) with cailf thymus DNA (CT-DNA) was explored by using absorption and fluorescence spectroscopic methods. The results revealed that the complexes have an affinity constant for DNA in the order of 104 M−1 and mode of interaction is intercalative mode. The DNA cleavage study showed that the complexes cleaved DNA without any external agent. The interaction of Cu(II) complexes with bovine serum albumin (BSA) was also studied using absorption and fluorescence techniques. The cytotoxic activity of the Cu(II) complexes was probed in HeLa (human breast adenocarcinoma cell line), B16F10 (Murine melanoma cell line) and HEPA1–6 celllines, complex 1 has good cytotoxic activity which is comparable with the doxarubicin drug, with IC50 values ranging from 3 to 12.6 μM. A further molecular docking technique was employed to understand the binding of the complexes towards the molecular target DNA. Investigation of the antioxidative properties showed that the metal complexes have significant radical scavenging activity potency against DPPH radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Raman N, Johnson Raja S, Sakthivel A (2009) A transition metal complexes with Schiff-base ligands: 4aminoantipyrine based derivatives–a review. J Coord Chem 62:691

    Article  CAS  Google Scholar 

  2. Islam MS, Farooque A, Bodruddoza MAK (2000) Thiocyanato complexes of copper(II), palladium (II), titanium (III) and vanadium (IV) ions containing atridentate Schiff Base ligand. Orient J Chem 16:257

    CAS  Google Scholar 

  3. Turan-Zitouni M, Sivaci Kilic FS, Erol K (2001) Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. Eur J Med Chem 36:685

    Article  CAS  PubMed  Google Scholar 

  4. Casas JS, García-Tasende MS, Sánchez A, Sordo J, Touceda (2007) ACoordination modes of 5-pyrazolones: a solid-state overview. Coord Chem Rev 251:1561

    Article  CAS  Google Scholar 

  5. Kurdekar GS, Sathisha MP, Srinivasa B, Naveen VK, Vidyanand KR, Suresh DK (2012) 4 -aminoantipyrine –based Schiff base transition metal complexes as potent anticonvulsant agents. Med Chem Res 21(9):2273–2279

    Article  CAS  Google Scholar 

  6. Shoaib M, Rahman G, Shah SWA, Umar MN (2015) Synthesis of 4-aminoantipyrine derived Schiff bases and their evaluation for antibacterial, cytotoxic and free radical scavenging activity. Bangladesh J Pharmacol 10(2):332–336

    Article  Google Scholar 

  7. Joseph J, Rani AB (2014) Antioxidant and biochemical activities of mixed ligand complexes. Appl Biochem Biotechnol 172:867–890

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang X-M, Fei B-L, Okamura T-a, Sun W-Y, Tang W-X, Ueyama N (2002) Synthesis, crystal structure and superoxide dismutase (SOD) activity of novel seven-coordinated manganese(II) complex with Multidentate di-Schiff Base ligands. Chem Lett 3:362–363

    Article  Google Scholar 

  9. Datta A, Karan NK, Mitra S, Rosair G (2002) Synthesis and structural characterization of [Cu(NH2CH2C6H4N = CHC5H5N)Cl2]. Naturforsch 57:999–1002

    CAS  Google Scholar 

  10. Sharghi H, Nasseri MA (2003) Schiff-Base metal(II) complexes as new catalysts in the efficient, mild and Regioselective conversion of 1,2-Epoxyethanes to 2-Hydroxyethyl Thiocyanates with ammonium Thiocyanate. Bull Chem Soc Jpn 76:137–142

    Article  CAS  Google Scholar 

  11. Joseph J, Nagashri K, Boomadevi Janaki G (2012) Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem 49:151–163

    Article  CAS  PubMed  Google Scholar 

  12. Flarakos J, Morand KL, Vouros P (2005) High-throughput solution-based medicinal library screening against human serum albumin. Anal Chem 77:1345–1353

    Article  CAS  PubMed  Google Scholar 

  13. Neng Zhou, Yi-Zeng Liang, Ping Wang (2008) Characterization of the interaction between furosemide and bovine serum albumin. 872:190–196

  14. Ghosh KS, Sen S, Sahoo BK, Dasgupta S (2009) A spectroscopic investigation into the interactions of 3′-O-carboxy esters of thymidine with bovine serum albumin. Biopolymers 91(9):737–744

    Article  CAS  PubMed  Google Scholar 

  15. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76(11):3047–3053

    Article  CAS  Google Scholar 

  16. Song YM, Wu Q, Yang PJ, Luan NN, Wang LF, Liu YM (2006) DNA binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. J Inorg Biochem 100(10):1685–1691

    Article  CAS  PubMed  Google Scholar 

  17. Baguley BC, Bret ML (1984) Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 23:937–943

    Article  CAS  PubMed  Google Scholar 

  18. Kelly JM, Mc Cintoonnell DJ, Oh Uigin C, Tossi AB, Kirsch-DeMesmaeker A, Masschelein A, Nasielski J (1987) Rutheniumpolypyridyl complexes; their interaction with DNA and their role assenstisers for its photocleavage. J Chem Soc Chem Commun 24:1821–1823

    Article  Google Scholar 

  19. Tan CP, Liu J, Chen LM, Shi S, Ji LN (2008) Synthesis, structural characteristics, DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. J Inorg Biochem 102:1644–1653

    Article  CAS  PubMed  Google Scholar 

  20. Searle MS, Maynard AJ, Williams HE (2003) DNA recognition by the anthracycline antibiotic respinomycin D: NMR structure of the intercalation complex with d(AGACGTCT)2. Org Biomol Chem 1(1):60–66

    Article  CAS  PubMed  Google Scholar 

  21. Sanner MF, Python (1999) A programming language for software integration and development. J Mol Graph Mod 17:57–61

    CAS  Google Scholar 

  22. Michel F, Sanner P (1999) A programming language for software integration and development. J Mol Graph Mod 17:57–61

    Google Scholar 

  23. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  24. Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from bauhinia tarapotensis. J Nat Prod 64(7):892–895

    Article  CAS  PubMed  Google Scholar 

  25. Saha MR, Hasan SMR, Akter R, Hossain MM, Alamb MS, Alam MA, Mazumder MEH (2008) In vitro free radical scavenging activity of methanol extract of the leaves of Mimusops elengi Linn. Bangladesh J Vet Med 6:197

    Google Scholar 

  26. Nikolav A V, Myachina, LI, Logvinenko VA, (1969) Thermal Analysis, vol 2. Academic Press, New York, p 779

  27. Mohamed GG, Abd EI, Wahweb ZH (2003) Salisaldehyde-2-aminobenzimidazole schiff base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). J Therm Anal 73:347

    Article  CAS  Google Scholar 

  28. Soliman AA, Mohamed GG (2004) Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochim Acta 421:151

    Article  CAS  Google Scholar 

  29. Waheb ZH, Mashaly MM, Fahem AA (2005) Synthesis and characterizationof cobalt(II), cerium(III), anddioxouranium(VI) complexes of 2,3-dimethyl-1-phenyl-4-salicylidene-3-pyrazolin-5-one mixed ligand complexes, pyrolytic products, and biological activities. Chem Pap 59(1):25

    Google Scholar 

  30. Radmakrishnan T, Joseph PT, Prabhakaran CP (1976) Copper(II) complexes of salicylal-4-amino antipyrine and 2-hydroxy naphthal-4-amino antipyrine. J Inorg Nucl Chem 38:2217

    Article  Google Scholar 

  31. Shankar G, Premkumar RR, Ramalingam SK (1986) 4-aminoantipyrine schiff-base complexes of lanthanide and uranyl ions. Polyhedron 5:991

    Article  CAS  Google Scholar 

  32. Ramesh R, Suganthy PK, Natarajan K (1996) Synthesis, spectra and electrochemistry of Ru(III) complexes with Tetradentate Schiff bases. Synth React Inorg Met – Org Chem 26:47

    Article  CAS  Google Scholar 

  33. Lindoy L, Moody WE, Taylor D (1977) Mass spectral and nuclear magnetic resonance (proton and carbon-13) study of metal complexes of quadridentate ligands derived from 1,2-diaminoethane and substituted. Beta.-diketones; x-ray structure of N,N′-ethylenebis(5,5-dimethyl-4-oxohexan-2-iminato)nickel(II). Inorg Chem 16:1962

    Article  CAS  Google Scholar 

  34. Alemi AA, Shaabani B (2000) Synthesis and characterization of aSchiff base of P-tert butylcalix[4]arene and its complex withcopper(II). Acta Chim Slov 47:363–369

    CAS  Google Scholar 

  35. Chang CJ, Connick WB, Low DW, Day MW, Gray HB (1998) Electronic structures of nitridomanganese(V) complexes. Inorg Chem 37:3107–3110

    Article  CAS  Google Scholar 

  36. Mashalay MM (1996) Synthesis and physico-chemical studies on rhenium(V) complexes with 2- benzimidazolethione. Synth React Inorg Met-Org Chem 26:211–224

    Article  Google Scholar 

  37. Mashalay MM (2002) Preparation and thermal studies of some new oxorhenium(V) complexes with 2-amino-5-methyl-1,3,4-thiadiazole. Synth React Inorg Met-Org Chem 32:373–397

    Article  Google Scholar 

  38. Raman N, Kulandaisamy A, Jeyasubramanian K (2001) Synthesis, spectroscopic characterization, redox and biological screening studiesof some Schiff base transition metal(II) complexes derived fromsalicylidene-4aminoantipyrine and 2-aminophenol/2-aminothiophenol. Synth React Inorg Met Org Chem 31(7):1249–1270

    Article  CAS  Google Scholar 

  39. Nakamoto K (1997) Infrared and Raman. Spectra of inorganic and coordination compounds 3rd edition. Wiley Inter- Science, New York

    Google Scholar 

  40. Ashwin KK, Laxma Reddy K, Satyanaryana S (2011) Synthesis, DNA binding, DNA photocleavage and antimicrobial activity of [Co(bpy)2DMHBT]3+, [Co(dmb)2DMHBT]3+ and [Co(phen)2DMHBT]3 + Complexes. Spectrosc Lett 44(1):27–37

    Article  Google Scholar 

  41. Raman N, Kulaindaswamy A, Jeyasubramanian K (2002) Synthesis, spectral, redox, and antimicrobial activity of schiff base transition metal(ii) complexes derived from 4-aminoantipyrine and benzyl. Synth React Inorg Met Org Nano Met Chem 32:1583–1610

    Article  CAS  Google Scholar 

  42. Salman M, Saadesh M (2013) Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand. Arab J Chem 6:191–196

    Article  Google Scholar 

  43. Rabindra Reddy P, Shilpa A (2011) Oxidative and hydrolytic DNA cleavage by Cu(II) complexes of salicylidene tyrosine schiffbase and 1,10 phenanthroline/bipyridine. Polyhedron 30:565–572

    Article  Google Scholar 

  44. Choi SN, Menzel ER, Wasson JR (1977) Electronic spectra of copper(II) dithiocarbamates. J Inorg Nucl Chem 39:417–422

    Article  CAS  Google Scholar 

  45. Kumar DN, Singh BK, Garg BS, Singh PK (2003) Spectral studies on copper(II) complexes of biologically active glutathione. Spec Chim Acta A 59:1487–1496

    Article  Google Scholar 

  46. Mariappan M, Maiya BG (2005) Effects of Anthracene and Pyrene units on the interactions of novel Polypyridylruthenium(II) mixed-ligand complexes with DNA. Eur J Inorg Chem 11:2164–2173

    Article  Google Scholar 

  47. Stemp EY, Weiner L, Sagi I, Yellin RA, Shanzer A (2004) Direct photo-induced DNA strand scission by a ruthenium bipyridyl complex. J Inorg Biochem 98:1750–1756

    Article  PubMed  Google Scholar 

  48. Deshpande MS, Kumbhar AA, Kumbhar AS (2007) Hydrolytic cleavage of DNA by a ruthenium(II) polypyridyl complex. Inorg Chem 46:5450–5452

    Article  CAS  PubMed  Google Scholar 

  49. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  50. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  51. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  CAS  PubMed  Google Scholar 

  52. Baguley BC, Bret ML (1984) Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 23:5937–5943

    Article  Google Scholar 

  53. Lakowicz JR, Webber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170

    Article  CAS  PubMed  Google Scholar 

  54. Ji LN, Zou XH, Liu JG (2001) Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA. Coord Chem Rev 216-217:513–537

    Article  CAS  Google Scholar 

  55. Liu YJ, Chao H, Tan LF, Yaun XY, Wei W, Ji LN (2005) Interaction of polypyridyl ruthenium (II) complex containing asymmetric ligand with DNA. J Inorg Biochem 99:530–537

    Article  CAS  PubMed  Google Scholar 

  56. Deng H, Xu H, Yang YH, Li H, Zou H, Qu LH, Ji LN (2003) Synthesis, characterization, DNA-binding and cleavage studies of [Ru(bpy)2(actatp)]2+ and [Ru(phen)2(actatp)]2+ (actatp = acenaphthereno[1,2-b]-1,4,8,9-tetraazariphenylence). J Inorg Biochem 97:207–214

    Article  CAS  PubMed  Google Scholar 

  57. Satyanarayana S, Dabowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32(10):2573–2584

    Article  CAS  PubMed  Google Scholar 

  58. Qin DD, Yang Z-Y, Wang BD (2007) Spectra and DNA-binding affinities of copper(II), nickel(II) complexes with a novel glycine Schiff base derived from chromone. Spectrochim Acta A 68:912–917

    Article  Google Scholar 

  59. Surendra Babu MS, Hussain Reddy K, Krishna G (2007) Synthesis characterization DNA interaction and cleavage activityof new mixed ligand copper(II) complexes with heterocyclic bases. Polyhedron 26:572–580

    Article  Google Scholar 

  60. Bi SY, Song DQ, Tian Y, Zhou X, Liu ZY, Zhang HQ (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins, Spectrochim. Acta Part A 61:629–636

    Article  Google Scholar 

  61. Raja DS, Bhuvanesh NS, Natarajan K (2012) Structure-activity relationship study of copper(II) complexes with 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4'-methylbenzoyl) hydrazone: synthesis, structures, DNA and protein interaction studies, antioxidative and cytotoxic activity. J Biol Inorg Chem 17:223–227

    Article  CAS  PubMed  Google Scholar 

  62. Iyyam Pillai S, Vijayaraghavan K, Subramanian S (2014) Evaluation of DNA-binding cleavage BSA interaction of Zn-hydroxy flavone complex. Der. Pharma Chemica 6:379–389

    Google Scholar 

  63. Nicholson JP, Wolmarans MR, Park GR (2000) The role of albumin in critical illness. British J Anesth 85:599–610

    Article  CAS  Google Scholar 

  64. Hu Y, Liu Y, Wang J, Xiao X, Qu S (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36:915–919

    Article  CAS  PubMed  Google Scholar 

  65. Bhuiyan MAR, Hoque MZ, Hossain SJ (2009) Free radical scavenging activities of Zizyphus mauritiana. World J Agr Sci 5(3):318–322

    Google Scholar 

  66. Ferrari M, Fornasiero MC, Isetta AM (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131:165–172

    Article  CAS  PubMed  Google Scholar 

  67. Rey NA, Neves A, Silva PP (2009) A synthetic dinuclear copper (II) hydrolase and its potential as antitumoral: cytotoxicity, cellular uptake and DNA cleavage. J Inorg Biochem 103:1323–1330

    Article  CAS  PubMed  Google Scholar 

  68. Rabindra Reddy P, Chandrashekar R, Satyanarayana B (2015) New Bio-Based Cu(II) Complexes and Study their Anti-Cancer Activities. doi:10.1007/s10895-016-1801-8.JOFL-D-15-00487.1

  69. Gao E, Sun Y, Liu Q, Duan L (2006) An anticancer metallobenzylmalonate: crystal structure and anticancer activity of a palladium complex of 2,2′-bipyridine and benzylmalonate. J Coord Chem 59:1295–1300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Dr. B. Anupama, Assistant Professor, Department of Chemistry, RBVRR Women’s College is thankful to the University Grants Commision (No. F:MRP-5429/14(SERO/UGC) for providing fund to this research study. I also thank to Management of RBVRR Women’s College and Dr. M. Surekha Reddy, Head, Department of Chemistry, RBVRR Women’s College for providing laboratory facilities in the College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berelli Anupama.

Electronic supplementary material

Fig. S1

1H–NMR Spectrum of Ligand (DOCX 1062 kb)

Fig. S2

ESI Mass spectra of ligand, complexes 1 and 2. (DOCX 815 kb)

Fig. S3

Thermograms of complexes 1and 2 (DOCX 1440 kb)

Fig. S4

Infrared spectra of complexes 1 and 2 (DOCX 141 kb)

Fig. S5

ESR spectra of complexes 1 and 2 (DOCX 87 kb)

Fig. S6

Antioxidant Activity of the complexes (DOCX 21 kb)

Fig. S7

Structures of metal complexes 1 and 2 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anupama, B., Aruna, A., Manga, V. et al. Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands. J Fluoresc 27, 953–965 (2017). https://doi.org/10.1007/s10895-017-2030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2030-5

Keywords

Navigation