Skip to main content

Advertisement

Log in

Interactive Effects of Obesity and Hypertension on Patterns of Hair Essential Trace Element and Mineral Content in Adult Women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate potential similar patterns and interactive effects of obesity and hypertension on hair essential trace element and mineral content in adult women. In this cross-sectional study, a total of 607 adult women divided into controls (n = 101), groups with obesity without hypertension (n = 199), hypertension without obesity (n = 143), and both obesity and hypertension (n = 164) were included in the study. Assessment of hair mineral and trace element levels was performed by inductively-coupled plasma mass-spectrometry. Hair Ca, Mg, Co, and Mn levels in women with obesity, hypertension, and both diseases were significantly lower, compared to controls. Hair Mg levels in women with obesity and hypertension were significantly lower, whereas hair Na and K were found to be higher when compared to other groups. Hair Fe and V content in obese patients was lower than in other groups. Obesity was associated with lower hair Cu levels, whereas patients with hypertension had higher hair Cu content. Hypertension was also associated with higher hair Cr and Se content irrespective of body weight. Hair Zn levels in obese women with and without hypertension were significantly lower than those in healthy controls and normal-weight women with hypertension. In multiple regression models hair Mg was considered as a significant negative predictor of both systolic and diastolic blood pressure values. The observed alterations in hair trace element and mineral content provide an additional link between obesity and hypertension, although further detailed studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Djalalinia S, Qorbani M, Peykari N, Kelishadi R (2015) Health impacts of obesity. Pak J Med Sci 31(1):239–242. https://doi.org/10.12669/pjms.311.7033

    Article  PubMed  PubMed Central  Google Scholar 

  3. Engin A (2017) The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 960:1–17. https://doi.org/10.1007/978-3-319-48382-5_1

    Article  CAS  PubMed  Google Scholar 

  4. Okunogbe A, Nugent R, Spencer G, Ralston J, Wilding J (2021) Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Glob Health 6(10):e006351. https://doi.org/10.1136/bmjgh-2021-006351

    Article  PubMed  PubMed Central  Google Scholar 

  5. DeMarco VG, Aroor AR, Sowers JR (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10(6):364–376. https://doi.org/10.1038/nrendo.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen T, Lau DC (2012) The obesity epidemic and its impact on hypertension. Can J Cardiol 28(3):326–333. https://doi.org/10.1016/j.cjca.2012.01.001

    Article  PubMed  Google Scholar 

  7. Mills KT, Stefanescu A, He J (2020) The global epidemiology of hypertension. Nat Rev Nephrol 16(4):223–237. https://doi.org/10.1038/s41581-019-0244-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas F, Bean K, Pannier B, Oppert JM, Guize L, Benetos A (2005) Cardiovascular mortality in overweight subjects: the key role of associated risk factors. Hypertension 46(4):654–659. https://doi.org/10.1161/01.HYP.0000184282.51550.00

    Article  CAS  PubMed  Google Scholar 

  9. Leggio M, Lombardi M, Caldarone E, Severi P, D'Emidio S, Armeni M, Bravi V, Bendini MG, Mazza A (2017) The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res 40(12):947–963. https://doi.org/10.1038/hr.2017.75

    Article  PubMed  Google Scholar 

  10. Zhao L, Zhang X, Shen Y, Fang X, Wang Y, Wang F (2015) Obesity and iron deficiency: a quantitative meta-analysis. Obes Rev 16(12):1081–1093. https://doi.org/10.1111/obr.12323

    Article  CAS  PubMed  Google Scholar 

  11. Gu K, Xiang W, Zhang Y, Sun K, Jiang X (2019) The association between serum zinc level and overweight/obesity: a meta-analysis. Eur J Nutr 58(8):2971–2982. https://doi.org/10.1007/s00394-018-1876-x

    Article  CAS  PubMed  Google Scholar 

  12. Sarrafzadegan N, Khosravi-Boroujeni H, Lotfizadeh M, Pourmogaddas A, Salehi-Abargouei A (2016) Magnesium status and the metabolic syndrome: a systematic review and meta-analysis. Nutrition 32(4):409–417. https://doi.org/10.1016/j.nut.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  13. Fontenelle LC, Cardoso de Araújo DS, da Cunha ST, Clímaco Cruz KJ, Henriques GS, Marreiro DDN (2022) Nutritional status of selenium in overweight and obesity: a systematic review and meta-analysis. Clin Nutr 41(4):862–884. https://doi.org/10.1016/j.clnu.2022.02.007

    Article  CAS  PubMed  Google Scholar 

  14. Gu K, Li X, Xiang W, Jiang X (2020) The relationship between serum copper and overweight/obesity: a meta-analysis. Biol Trace Elem Res 194(2):336–347. https://doi.org/10.1007/s12011-019-01803-6

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Wang W, Liu H, Li S, Zhang D (2019) The association of serum zinc and copper with hypertension: a meta-analysis. J Trace Elem Med Biol 53:41–48. https://doi.org/10.1016/j.jtemb.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  16. Banjanin N, Belojevic G (2021) Relationship of dietary magnesium intake and serum magnesium with hypertension: a review. Magnes Res 34(4):166–171. https://doi.org/10.1684/mrh.2021.0492

    Article  CAS  PubMed  Google Scholar 

  17. Jayedi A, Zargar MS (2019) Dietary calcium intake and hypertension risk: a dose-response meta-analysis of prospective cohort studies. Eur J Clin Nutr 73(7):969–978. https://doi.org/10.1038/s41430-018-0275-y

    Article  CAS  PubMed  Google Scholar 

  18. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68(1):19–31. https://doi.org/10.1007/s12576-017-0571-7

    Article  CAS  PubMed  Google Scholar 

  19. Tuzcu M, Sahin N, Orhan C, Agca CA, Akdemir F, Tuzcu Z, Komorowski J, Sahin K (2011) Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond) 8:28. https://doi.org/10.1186/1743-7075-8-28

    Article  CAS  PubMed  Google Scholar 

  20. Park SJ, Youn CK, Hyun JW, You HJ (2013) The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res 151(2):294–300. https://doi.org/10.1007/s12011-012-9557-8

    Article  CAS  PubMed  Google Scholar 

  21. Tinkov AA, Ajsuvakova OP, Filippini T, Zhou JC, Lei XG, Gatiatulina ER, Michalke B, Skalnaya MG, Vinceti M, Aschner M, Skalny AV (2020) Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules 10(4):658. https://doi.org/10.3390/biom10040658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Liu CN, Wolf RM, Ralle M, Dev S, Pierson H, Askin F, Steele KE, Magnuson TH, Schweitzer MA, Wong GW, Lutsenko S (2019) Obesity is associated with copper elevation in serum and tissues. Metallomics 11(8):1363–1371. https://doi.org/10.1039/c9mt00148d

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68(6):333–340. https://doi.org/10.1111/j.1753-4887.2010.00293.x

    Article  PubMed  Google Scholar 

  24. Tinkov AA, Sinitskii AI, Popova EV, Nemereshina ON, Gatiatulina ER, Skalnaya MG, Skalny AV, Nikonorov AA (2015) Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med Hypotheses 85(3):343–347. https://doi.org/10.1016/j.mehy.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  25. Houston MC, Harper KJ (2008) Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens (Greenwich) 10(7s2):3–11. https://doi.org/10.1111/j.1751-7176.2008.08575.x

    Article  CAS  PubMed  Google Scholar 

  26. Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356(19):1966–1978. https://doi.org/10.1056/NEJMra064486

    Article  PubMed  Google Scholar 

  27. Tubek S (2007) Role of zinc in regulation of arterial blood pressure and in the etiopathogenesis of arterial hypertension. Biol Trace Elem Res 117(1-3):39–51. https://doi.org/10.1007/BF02698082

    Article  CAS  PubMed  Google Scholar 

  28. Chojnacka K, Zielińska A, Górecka H, Dobrzański Z, Górecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29(3):314–319. https://doi.org/10.1016/j.etap.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  29. Kosanovic M, Jokanovic M (2011) Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environ Monit Assess 174(1-4):635–643. https://doi.org/10.1007/s10661-010-1484-6

    Article  CAS  PubMed  Google Scholar 

  30. World Health Organization (2021) Obesity and overweight fact sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Last accessed 16 Dec 2022.

    Google Scholar 

  31. Carey RM, Whelton PK (2017) ACC/AHA Hypertension Guideline Writing Committee (2018) Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017 American College of Cardiology/American Heart Association Hypertension Guideline. Ann Intern Med 168(5):351–358. https://doi.org/10.7326/M17-3203

    Article  Google Scholar 

  32. La SA, Lee JY, Kim DH, Song EL, Park JH, Ju SY (2016) Low magnesium levels in adults with metabolic syndrome: a meta-analysis. Biol Trace Elem Res 170(1):33–42. https://doi.org/10.1007/s12011-015-0446-9

    Article  CAS  PubMed  Google Scholar 

  33. Ju SY, Choi WS, Ock SM, Kim CM, Kim DH (2014) Dietary magnesium intake and metabolic syndrome in the adult population: dose-response meta-analysis and meta-regression. Nutrients 6(12):6005–6019. https://doi.org/10.3390/nu6126005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schutten JC, Joosten MM, de Borst MH, Bakker SJL (2018) Magnesium and blood pressure: a physiology-based approach. Adv Chronic Kidney Dis 25(3):244–250. https://doi.org/10.1053/j.ackd.2017.12.003

    Article  PubMed  Google Scholar 

  35. Han H, Fang X, Wei X, Liu Y, Jin Z, Chen Q, Fan Z, Aaseth J, Hiyoshi A, He J, Cao Y (2017) Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J 16(1):26. https://doi.org/10.1186/s12937-017-0247-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kostov K, Halacheva L (2018) Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 19(6):1724. https://doi.org/10.3390/ijms19061724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dos Santos LR, Melo SRS, Severo JS, Morais JBS, da Silva LD, de Paiva SM, de Sousa TGV, Henriques GS, do Nascimento Marreiro D (2021) Cardiovascular diseases in obesity: what is the role of magnesium? Biol Trace Elem Res 199(11):4020–4027. https://doi.org/10.1007/s12011-020-02528-7

    Article  CAS  PubMed  Google Scholar 

  38. Han D, Fang X, Su D, Huang L, He M, Zhao D, Zou Y, Zhang R (2019) Dietary calcium intake and the risk of metabolic syndrome: a systematic review and meta-analysis. Sci Rep 9(1):19046. https://doi.org/10.1038/s41598-019-55507-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang F, Ye J, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S (2019) Anti-obesity effects of dietary calcium: the evidence and possible mechanisms. Int J Mol Sci 20(12):3072. https://doi.org/10.3390/ijms20123072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Manson JE, Buring JE, Lee IM, Sesso HD (2008) Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension 51(4):1073–1079. https://doi.org/10.1161/HYPERTENSIONAHA.107.107821

    Article  CAS  PubMed  Google Scholar 

  41. Sabanayagam C, Shankar A (2011) Serum calcium levels and hypertension among U.S. adults. J Clin Hypertens (Greenwich) 13(10):716–721. https://doi.org/10.1111/j.1751-7176.2011.00503.x

    Article  CAS  PubMed  Google Scholar 

  42. Bussière FI, Gueux E, Rock E, Mazur A, Rayssiguier Y (2002) Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats. Eur J Nutr 41(5):197–202. https://doi.org/10.1007/s00394-002-0376-0

    Article  CAS  PubMed  Google Scholar 

  43. Tinkov AА, Ajsuvakova О, Skalnaya М, Karganov М, Chang SS, Skalny АV (2020) Measuring changes in serum, hair and urinary levels of cobalt, copper, manganese, and iron in obesity and hypertension using the ICP-MS technique. Pathol Physiol Exp Ther 64(2):89–95. https://doi.org/10.25557/0031-2991.2020.02.89-95

    Article  Google Scholar 

  44. Kawakami T, Hanao N, Nishiyama K, Kadota Y, Inoue M, Sato M, Suzuki S (2012) Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol Appl Pharmacol 258(1):32–42. https://doi.org/10.1016/j.taap.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, Cao J, Xu Q, Lu M (2022) Dose-response relationships between urinary cobalt concentrations and obesity, insulin resistance, and metabolic-related disorders in the general population. Environ Sci Pollut Res Int 29(20):29682–29688. https://doi.org/10.1007/s11356-021-17861-0

    Article  CAS  PubMed  Google Scholar 

  46. Zhu Q, Liao S, Lu X, Shi S, Gong D, Cheang I, Zhu X, Zhang H, Li X (2021) Cobalt exposure in relation to cardiovascular disease in the United States general population. Environ Sci Pollut Res Int 28(31):41834–41842. https://doi.org/10.1007/s11356-021-13620-3

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Yang L, Xie P, Yu J, Yu T, Wang H, Maimaitili Y, Wang J, Ma H, Yang Y, Zheng H (2017) Cobalt chloride upregulates impaired HIF-1α expression to restore sevoflurane post-conditioning-dependent myocardial protection in diabetic rats. Front Physiol 8:395. https://doi.org/10.3389/fphys.2017.00395

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ohtomo S, Nangaku M, Izuhara Y, Takizawa S, Cv S, Miyata T (2008) Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant 23(4):1166–1172. https://doi.org/10.1093/ndt/gfm715

    Article  CAS  PubMed  Google Scholar 

  49. Nicoloff G, Angelova M, Christova I, Nikolov A, Alexiev A (2006) Serum cobalt in children with essential hypertension. Am J Hum Biol 18(6):798–805. https://doi.org/10.1002/ajhb.20554

    Article  CAS  PubMed  Google Scholar 

  50. Liang C, Wang J, Xia X, Wang Q, Li Z, Tao R, Tao Y, Xiang H, Tong S, Tao F (2018) Serum cobalt status during pregnancy and the risks of pregnancy-induced hypertension syndrome: a prospective birth cohort study. J Trace Elem Med Biol 46:39–45. https://doi.org/10.1016/j.jtemb.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Li F, Xue J, Li Y, Li J (2022) Association of blood cobalt concentrations with dyslipidemia, hypertension, and diabetes in a US population: a cross-sectional study. Medicine (Baltimore) 101(2):e28568. https://doi.org/10.1097/MD.0000000000028568

    Article  CAS  PubMed  Google Scholar 

  52. Skalnaya MG, Skalny AV, Grabeklis AR, Serebryansky EP, Demidov VA, Tinkov AA (2018) Hair trace elements in overweight and obese adults in association with metabolic parameters. Biol Trace Elem Res 186(1):12–20. https://doi.org/10.1007/s12011-018-1282-5

    Article  CAS  PubMed  Google Scholar 

  53. Al-Muzafar HM, Al-Hariri MT (2021) Alterations in manganese level in the biological samples of young obese Saudi women. J Taibah Univ Med Sci 16(5):706–711. https://doi.org/10.1016/j.jtumed.2021.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu C, Woo JG, Zhang N (2017) Association between urinary manganese and blood pressure: results from National Health and Nutrition Examination Survey (NHANES), 2011-2014. PLoS One 12(11):e0188145. https://doi.org/10.1371/journal.pone.0188145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee YK, Lyu ES, Oh SY, Park HR, Ro HK, Heo YR, Hyun T, Choi MK (2015) Daily copper and manganese intakes and their relation to blood pressure in normotensive adults. Clin Nutr Res 4(4):259–266. https://doi.org/10.7762/cnr.2015.4.4.259

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li L, Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev 2018:7580707. https://doi.org/10.1155/2018/7580707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee BK, Kim Y (2011) Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008. Environ Res 111(6):797–803. https://doi.org/10.1016/j.envres.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  58. Chen H, Cui Z, Lu W, Wang P, Wang J, Zhou Z, Zhang N, Wang Z, Lin T, Song Y, Liu L, Huang X, Chen P, Tang G, Duan Y, Wang B, Li J, Zhang Y, Huo Y et al (2022) Geographical, sex, age, and seasonal differences in serum manganese status among Chinese adults with hypertension. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03135-4

  59. Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. Met Ions Life Sci 13:199–227. https://doi.org/10.1007/978-94-007-7500-8_7

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tinkov AA, Skalnaya MG, Ajsuvakova OP, Serebryansky EP, Chao JC, Aschner M, Skalny AV (2021) Selenium, zinc, chromium, and vanadium levels in serum, hair, and urine samples of obese adults assessed by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 199(2):490–499. https://doi.org/10.1007/s12011-020-02177-w

    Article  PubMed  Google Scholar 

  61. Zhang H, Cai L (2020) Zinc homeostasis plays an important role in the prevention of obesity-induced cardiac inflammation, remodeling and dysfunction. J Trace Elem Med Biol 62:126615. https://doi.org/10.1016/j.jtemb.2020.126615

    Article  CAS  PubMed  Google Scholar 

  62. Kim J (2013) Dietary zinc intake is inversely associated with systolic blood pressure in young obese women. Nutr Res Pract 7(5):380–384. https://doi.org/10.4162/nrp.2013.7.5.380 Erratum in: Nutr Res Pract 7(6):519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suliburska J, Bogdański P, Pupek-Musialik D, Krejpcio Z (2011) Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 139(2):137–150. https://doi.org/10.1007/s12011-010-8650-0

    Article  CAS  PubMed  Google Scholar 

  64. Kee HJ, Kim I, Jeong MH (2022) Zinc-dependent histone deacetylases: potential therapeutic targets for arterial hypertension. Biochem Pharmacol 202:115111. https://doi.org/10.1016/j.bcp.2022.115111

    Article  CAS  PubMed  Google Scholar 

  65. Williams CR, Mistry M, Cheriyan AM, Williams JM, Naraine MK, Ellis CL, Mallick R, Mistry AC, Gooch JL, Ko B, Cai H, Hoover RS (2019) Zinc deficiency induces hypertension by promoting renal Na+ reabsorption. Am J Physiol Renal Physiol 316(4):F646–F653. https://doi.org/10.1152/ajprenal.00487.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30:207–214. https://doi.org/10.1016/j.jtemb.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  67. von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD (2015) Iron deficiency and cardiovascular disease. Nat Rev Cardiol 12(11):659–669. https://doi.org/10.1038/nrcardio.2015.109

    Article  CAS  Google Scholar 

  68. Han M, Guan L, Ren Y, Zhao Y, Liu D, Zhang D, Liu L, Liu F, Chen X, Cheng C, Li Q, Guo C, Zhou Q, Tian G, Qie R, Huang S, Wu X, Liu Y, Li H et al (2020) Dietary iron intake and risk of death due to cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. Asia Pac J Clin Nutr 29(2):309–321. https://doi.org/10.6133/apjcn.202007_29(2).0014

    Article  CAS  PubMed  Google Scholar 

  69. Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes 2(4):369–376. https://doi.org/10.1161/CIRCOUTCOMES.108.831552

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Bargellini A, Orsini N, Dhillon KS, Whelton P (2019) Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 29(4):398–408. https://doi.org/10.1016/j.numecd.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  71. Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Mol Med Rep 5(2):299–304. https://doi.org/10.3892/mmr.2011.651

    Article  CAS  PubMed  Google Scholar 

  72. Granadillo VA, Tahán JE, Salgado O, Elejalde LE, Rodríguez-Iturbe B, Romero GB, Romero RA (1995) The influence of the blood levels of lead, aluminum and vanadium upon the arterial hypertension. Clin Chim Acta 233(1-2):47–59. https://doi.org/10.1016/0009-8981(94)05966-v

    Article  CAS  PubMed  Google Scholar 

  73. Wu W, Jiang S, Zhao Q, Zhang K, Wei X, Zhou T, Liu D, Zhou H, Zeng Q, Cheng L, Miao X, Lu Q (2018) Environmental exposure to metals and the risk of hypertension: a cross-sectional study in China. Environ Pollut 233:670–678. https://doi.org/10.1016/j.envpol.2017.10.111

    Article  CAS  PubMed  Google Scholar 

  74. Jiang S, Zhou S, Liu H, Peng C, Zhang X, Zhou H, Wang Z, Lu Q (2021) Concentrations of vanadium in urine with hypertension prevalence and blood pressure levels. Ecotoxicol Environ Saf 213:112028. https://doi.org/10.1016/j.ecoenv.2021.112028

    Article  CAS  PubMed  Google Scholar 

  75. Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65(5):603–611

    CAS  PubMed  Google Scholar 

  76. Xu J, White AJ, Niehoff NM, O'Brien KM, Sandler DP (2020) Airborne metals exposure and risk of hypertension in the Sister Study. Environ Res 191:110144. https://doi.org/10.1016/j.envres.2020.110144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang YR, Zhang SQ, Xiong Y, Zhao Y, Fu H, Zhang HP, Xiong KM (2003) Studies of five microelement contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res. 92(2):97–104. https://doi.org/10.1385/BTER:92:2:97

    Article  CAS  PubMed  Google Scholar 

  78. Lari A, Fatahi S, Sohouli MH, Shidfar F (2021) The impact of chromium supplementation on blood pressure: a systematic review and dose-response meta-analysis of randomized-controlled trials. High Blood Press Cardiovasc Prev 28(4):333–342. https://doi.org/10.1007/s40292-021-00456-8

    Article  PubMed  Google Scholar 

  79. Kopilas MA, Dang LN, Anderson HD (2007) Effect of dietary chromium on resistance artery function and nitric oxide signaling in the sucrose-fed spontaneously hypertensive rat. J Vasc Res 44(2):110–118. https://doi.org/10.1159/000098483

    Article  CAS  PubMed  Google Scholar 

  80. Cao X, Wang S, Bi R, Tian S, Huo Y, Liu J (2019) Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: molecular interaction and cell damage. Chemosphere 222:355–363. https://doi.org/10.1016/j.chemosphere.2019.01.137

    Article  CAS  PubMed  Google Scholar 

  81. Esfahani M, Bashirian S, Mehri F, Khazaei S (2020) Association between silica exposure and cardiovascular disease mortality: a meta-analysis. J Tehran Heart Cent 15(4):151–157. https://doi.org/10.18502/jthc.v15i4.5940

    Article  PubMed  PubMed Central  Google Scholar 

  82. Duan J, Yu Y, Yu Y, Li Y, Huang P, Zhou X, Peng S, Sun Z (2014) Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Part Fibre Toxicol 11:50. https://doi.org/10.1186/s12989-014-0050-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skröder H, Kippler M, Nermell B, Tofail F, Levi M, Rahman SM, Raqib R, Vahter M (2017) Major limitations in using element concentrations in hair as biomarkers of exposure to toxic and essential trace elements in children. Environ Health Perspect 125(6):067021. https://doi.org/10.1289/EHP1239

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was performed with support of the Russian Ministry of Science and Higher Education, Project No. 0856-2020-0008.

Author information

Authors and Affiliations

Authors

Contributions

AVS, MA, and JSC — supervision; TVK, NNZ, TIB, and AAT — data acquisition; TVK, NNZ, TIB, AAT, JCJC, and MMBP — data analysis; TVK, NNZ, TIB, AAT, JCJC, and MMBP — manuscript draft preparation; AVS, MA, and JSC — manuscript review and editing. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24 kb)

ESM 2

(DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Korobeinikova, T.V., Zabroda, N.N. et al. Interactive Effects of Obesity and Hypertension on Patterns of Hair Essential Trace Element and Mineral Content in Adult Women. Biol Trace Elem Res 201, 4677–4687 (2023). https://doi.org/10.1007/s12011-023-03561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03561-y

Keywords

Navigation