Skip to main content
Log in

Dietary Intake and Serum and Hair Concentrations of Minerals and their Relationship with Serum Lipids and Glucose Levels in Hypertensive and Obese Patients with Insulin Resistance

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inadequate minerals intake, as well as disruption of some metabolic processes in which microelements are cofactors, are suggested to lead to the development of hypertension. The role of minerals in the pathogenesis of hypertension still remains to be explained. In the present study, we sought to determine associations between serum and hair mineral concentrations and serum lipids and glucose levels. Forty obese hypertensive subjects with insulin resistance and 40 healthy volunteers were recruited in the study. Blood pressure, BMI, and insulin resistance were recorded in all subjects. Levels of lipids, glucose, sodium and potassium, iron, copper, zinc, magnesium, and calcium were assessed in serum. Iron, copper, zinc, magnesium, and calcium were assessed in hair. Dietary intake of the analyzed minerals was estimated. We found distinctly higher concentrations of serum iron and serum and hair calcium as well as markedly lower levels of hair zinc in the hypertensive subjects. The study group manifested also significantly lower daily intake of calcium, magnesium, and iron. We observed a relationship between the concentrations of iron, zinc, and copper in serum and hair and high and low range of cholesterol, triglycerides, and glucose serum levels in the studied patients. Moreover, this study demonstrated significant correlation between serum and hair concentrations of selected minerals and their dietary intake and levels of serum lipids and glucose and blood pressure in the study and the control groups. The obtained results seem to indicate the association between lipid and glucose metabolism and iron, copper, zinc, and calcium concentrations in blood and hair of hypertensive and obese patients with insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TChol:

Total cholesterol

TG:

Triglycerides

LDL:

Low-density lipoproteins

HDL:

High-density lipoproteins

GLU:

Glucose

BP:

Blood pressure

SBP:

Systolic blood pressure

DSB:

Diastolic blood pressure

BMI:

Body mass index

IR:

Insulin resistance

RDA:

Recommended dietary allowance

W:

Women

M:

Men

References

  1. Brands MW, Hall JE (1992) Insulin resistance, hyperinsulinemia, an obesity-associated hypertension. J Am Soc Nephrol 3:1064–1077

    CAS  PubMed  Google Scholar 

  2. Goff DC, Zaccoro DJ, Haffner SM, Saad MF et al (2003) Insulin sensitivity and the risk of incident hypertension. Diabetes Care 26:805–809

    Article  PubMed  Google Scholar 

  3. Lender D, Arauz-Pacheco C, Adams-Huet B et al (1997) Essential hypertension is associated with decreased insulin clearance and insulin resistance. Hypertension 29:111–114

    CAS  PubMed  Google Scholar 

  4. Duda G, Suliburska J, Wójciak R et al (2006) Analysis of dietary intake of iron, copper and zinc and their serum and hair levels in hypertensive adults. Polish J Environ Stud 15:252–255

    Google Scholar 

  5. Duda G, Suliburska J, Wójciak RW et al. (2004) Levels of selected microelements in hypertensive subjects. In: Macro and trace elements. SCHUBERT-Verlag Leipzig, Friedrich-Schiller-Universitat, Jena, pp 930–934

  6. Prasad AS (1996) Zinc: the biology and therapeutics of an ion. Ann Intern Med 125:142–143

    CAS  PubMed  Google Scholar 

  7. Schuschke DA (1997) Dietary copper in the physiology of the microcirculation. J Nutr 127:2274–2281

    CAS  PubMed  Google Scholar 

  8. Fields M (1998) Nutritional factors adversely influencing the glucose/insulin system. J Am Coll Nutr 17:317–321

    CAS  PubMed  Google Scholar 

  9. Nilesen FH, Milne DB, Klevay LM et al (2007) Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J Am Coll Nutr 26:121–132

    Google Scholar 

  10. Ma B, Lawson AB, Liese AD et al (2006) Dairy, magnesium, and calcium intake in relation to insulin sensitivity: approaches to modeling a dose-dependent association. Am J Epidemiol 164:449–458

    Article  PubMed  Google Scholar 

  11. McCarron DA, Resusser ME (1999) Finding consensus in the dietary calcium-blood pressure debate. J Am Coll Nutr 18:398S–405S

    CAS  PubMed  Google Scholar 

  12. Parikh SJ, Yanovski JA (2003) Calcium intake and adiposity. Am J Clin Nutr 77:281–287

    CAS  PubMed  Google Scholar 

  13. Sanchez M, Sierra AD, Coca A et al (1997) Oral calcium supplementation reduces intraplatelet free calcium concentration and insulin resistance in essential hypertensive patients. Hypertension 29:531–536

    CAS  PubMed  Google Scholar 

  14. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    CAS  PubMed  Google Scholar 

  15. Jaitovich A, Bertorello AM (2010) Salt, Na(+), K(+)-ATPase and hypertension. Life Sci 86:73–78

    Google Scholar 

  16. National Food and Nutrition Institute (1996) Instruction of 24 hour diet recall. Department of Epidemiology and Norms of Nutrition, National Food and Nutrition Institute, Warsaw

  17. Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–2354

    Article  CAS  PubMed  Google Scholar 

  18. Shi Z, Hu X, Yuan B (2006) Association between serum ferritin, hemoglobin, iron intake, and diabetes in adults in Jiangsu, China. Diabetes Care 29:1878–1883

    Article  CAS  PubMed  Google Scholar 

  19. Clegg MS, Ferrell F, Keen CL (1987) Hypertension-induced alternation in copper and zinc metabolism in Dahl rats. Hypertension 9:624–628

    CAS  PubMed  Google Scholar 

  20. Pęczkowska M, Kabat M, Janaszek-Sitkowska A et al (1996) Evaluation of selected parameters of zinc metabolism in patients with primary hypertension. Pol Arch Med Wewn 95:198–204

    PubMed  Google Scholar 

  21. Senruk UK, Kaputlu I, Gunduz F et al (2000) Tissue and blood levels of zinc, copper and magnesium in nitric oxide synthase blockade-induced hypertension. Biol Trace Elem Res 77:97–106

    Article  Google Scholar 

  22. Chen MD, Sheu WH (2001) Plasma status of selected minerals in hypertensive men with and without insulin resistance. J Trace Elem Med Biol 14:228–231

    Article  CAS  PubMed  Google Scholar 

  23. Chen MD, Lin PY, Sheu WH (1997) Zinc status in plasma of obese individuals during glucose administration. Biol Trace Elem Res 60:123–129

    Article  CAS  PubMed  Google Scholar 

  24. Akanle OA, Akintanmide A, Durosinmi MA et al (1999) Elemental analysis of blood of nigerian hypertensive subjects. Biol Trace Elem Res 71–72:611–616

    Article  PubMed  Google Scholar 

  25. Hajjar I, Kotchen T (2003) Regional variations of blood pressure in the United States are associated with regional variations in dietary intakes: the NHANES-III data. J Nutr 133:211–214

    CAS  PubMed  Google Scholar 

  26. Saari JT, Schuschke DA (2008) Cardiovascular effects of dietary copper deficiency. BioFactors 10:359–375

    Article  Google Scholar 

  27. Klevay LM (2000) Cardiovascular disease from copper deficiency—a history. J Nutr 130:489S–492S

    CAS  PubMed  Google Scholar 

  28. Zargar AH, Shah NA, Masoodi SR et al (1998) Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J 74:665–668

    Article  CAS  PubMed  Google Scholar 

  29. Lavi S, Lerman A (2008) Response to endothelial dysfunction, isoprostanes, and copper deficiency. Hypertension 52:e28

    Article  CAS  Google Scholar 

  30. Salonen JT, Nyssonen K, Korpela H et al (1992) High stored iron levels are associated with risk of myocardial infarction in Eastern Finnish men. Circulation 86:803–811

    CAS  PubMed  Google Scholar 

  31. Fields M, Lewis ChG (1999) Level of dietary iron, not type of dietary fat, is hyperlipidemic in copper-deficient rats. J Am Coll Nutr 18:353–357

    CAS  PubMed  Google Scholar 

  32. Ozdemir A, Sevinc C, Selamet U et al (1999) The relationship between iron deficiency anemia and lipid metabolism in premenopausal women. J Am Coll Nutr 18:353–357

    Google Scholar 

  33. Shaley H, Kapelushnik J, Moser A, Knobler H, Tamary H (2007) Hypocholesterolemia in chronic anemias with increased erythropoietic activity. Am J Hematol 82:199–202

    Article  Google Scholar 

  34. Wrede CE, Buettner R, Bollheimer LC et al (2006) Association between serum ferritin and the insulin resistance syndrome in a representative population. Eur J Endocrinol 154:333–340

    Article  CAS  PubMed  Google Scholar 

  35. Fumeron F, Pean F, Driss F et al (2006) Ferritin and transferrin are both predictive of the onset of hyperglycemia in men and women over 3 years. Diabetes Care 29:2090–2094

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez-Real JM, Lopez-Bermejo A, Ricart W (2005) Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem 51:1201–1205

    Article  CAS  PubMed  Google Scholar 

  37. Zheng H, Patel M, Cable R et al (2007) Insulin sensitivity, vascular function, and iron stores in voluntary blood donors. Diabetes Care 30:2685–2689

    Article  CAS  PubMed  Google Scholar 

  38. Jehn M, Clark JM, Guallar E (2004) Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 27:2422–2428

    Article  PubMed  Google Scholar 

  39. Wilson JG, Lindquist JH, Grambow SC et al (2003) Potential role of increased iron stores in diabetes. Am J Med Sci 325:332–339

    Article  PubMed  Google Scholar 

  40. McCarty MF (2003) Hyperinsulinemia may boost both hematocrit and iron absorption by up-regulating activity of hypoxia inducible factor-1. Med Hypotheses 61:567–573

    Article  CAS  PubMed  Google Scholar 

  41. Sharon FS, Taylor CG (2001) Dietary zinc supplementation attenuates hyperglycemia in db/db mice. E M B 226:43–51

    Google Scholar 

  42. Reiterer G, MacDonald R, Browning JD et al (2005) Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. J Nutr 135:2114–2118

    CAS  PubMed  Google Scholar 

  43. Sing RB, Niaz MA, Rastogi SS, Bajaj S et al (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 17:564–570

    Google Scholar 

  44. Hughes S, Samman S (2006) The Effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J Am Coll Nutr 25:285–291

    CAS  PubMed  Google Scholar 

  45. Jorde R, Sundsfjord J, Haug E et al (2000) Relation between low calcium intake, parathyroid hormone, and blood pressure. Hypertension 35:1154–1159

    CAS  PubMed  Google Scholar 

  46. Cappuccio FP, Elliott P, Allender PS et al (1995) Epidemiologic association between dietary calcium intake and blood pressure: a meta-analysis of published data. Am J Epidemiol 142:935–945

    CAS  PubMed  Google Scholar 

  47. Gillman MW, Rifas-Shiman SL, Kleinman KP et al (2004) Maternal calcium intake and offspring blood pressure. Circulation 110:1990–1995

    Article  CAS  PubMed  Google Scholar 

  48. Narayan KMV, Hanson R, Smith CJ et al (1998) Dietary calcium and blood pressure in a native American population. J Am Coll Nutr 17:59–64

    CAS  PubMed  Google Scholar 

  49. Zemel MB (2001) Calcium modulation of hypertension and obesity: mechanisms and implications. J Am Coll Nutr 20:428S–435S

    CAS  PubMed  Google Scholar 

  50. Zhao Q, Gu D, Chen J et al (2009) Correlation between blood pressure responses to dietary sodium and potassium intervention in a Chinese population. Am J Hypertens 22:1281–1286

    Article  CAS  PubMed  Google Scholar 

  51. Horky K (2009) Reducing food salt content—a neglected approach to hypertension prevention and treatment in the population. Vnitr Lek 55:797–801

    CAS  PubMed  Google Scholar 

  52. Jablonski KL, Gates PE, Pierce GL et al (2009) Low dietary sodium intake is associated with enhanced vascular endothelial function in middle-aged and older adults with elevated systolic blood pressure. Ther Adv Cardiovasc Dis 3:347–356

    Article  PubMed  Google Scholar 

  53. Liu Z (2009) Dietary sodium and the incidence of hypertension in the Chinese population: a review of nationwide surveys. Am J Hypertens 22:929–933

    Article  CAS  PubMed  Google Scholar 

  54. Schoppen S, Perez-Granados AM, Carbajal A et al (2004) A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J Nutr 134:1058–1063

    CAS  PubMed  Google Scholar 

  55. Harsha DW, Sacks FM, Obarzanek E et al (2004) Effect of dietary sodium intake on blood lipids. Hypertension 43:393–398

    Article  CAS  PubMed  Google Scholar 

  56. Houston MC, Harper KJ (2008) Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens 10(7 Suppl):3–11

    CAS  Google Scholar 

  57. Lima ML, Pousada J, Barbosa C et al (2005) Magnesium deficiency and insulin resistance in patients with type 2 diabetes mellitus. Arq Bras Endocrinol Metabol 49:959–963

    Google Scholar 

  58. Hatzistavri LS, Sarafidis PA, Georgianos PI et al (2009) Oral magnesium supplementation reduces ambulatory blood pressure in patients with mild hypertension. Am J Hypertens 22:1070–1075

    Article  CAS  PubMed  Google Scholar 

  59. Guerrero-Romero F, Rodríguez-Morán M (2009) The effect of lowering blood pressure by magnesium supplementation in diabetic hypertensive adults with low serum magnesium levels: a randomized, double-blind, placebo-controlled clinical trial. J Hum Hypertens 23:245–251

    Article  CAS  PubMed  Google Scholar 

  60. Nasri H, Baradaran HR (2008) Lipids in association with serum magnesium in diabetes mellitus patients. Bratisl Lek Listy 109:302–306

    CAS  PubMed  Google Scholar 

  61. Afridi HI, Kazi TG, Kazi N (2008) Potassium, calcium, magnesium, and sodium levels in biological samples of hypertensive and nonhypertensive diabetes mellitus patients. Biol Trace Elem Res 124:206–224

    Article  CAS  PubMed  Google Scholar 

  62. Dembińska-Kmieć A, Naskalski JW (2002) Laboratory diagnostic with basic of clinical biochemistry. Urban & Partner, Wrocław

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Suliburska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suliburska, J., Bogdański, P., Pupek-Musialik, D. et al. Dietary Intake and Serum and Hair Concentrations of Minerals and their Relationship with Serum Lipids and Glucose Levels in Hypertensive and Obese Patients with Insulin Resistance. Biol Trace Elem Res 139, 137–150 (2011). https://doi.org/10.1007/s12011-010-8650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8650-0

Keywords

Navigation