Skip to main content
Log in

Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 19 March 2022

This article has been updated

Abstract

Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV–Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu–Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and materials are available for all authors and included in this published article.

Change history

References

  1. Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531. https://doi.org/10.1016/j.envint.2010.10.012

    Article  CAS  Google Scholar 

  2. Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  3. Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14:1352–1364. https://doi.org/10.1021/acs.molpharmaceut.6b00839

    Article  CAS  Google Scholar 

  4. Senthilkumar N, Sharma PK, Sood N, Bhalla N (2021) Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 445:214082. https://doi.org/10.1016/j.ccr.2021.214082

    Article  CAS  Google Scholar 

  5. Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145. https://doi.org/10.1016/j.jhazmat.2012.05.009

    Article  CAS  Google Scholar 

  6. Alavi M, Varma RS (2021) Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: recent advances. Sustain Chem Pharm 21:100412. https://doi.org/10.1016/j.scp.2021.100412

    Article  CAS  Google Scholar 

  7. Giráldez-Pérez RM, Grueso E, Domínguez I et al (2021) Biocompatible DNA/5-fluorouracil-gemini surfactant-functionalized gold nanoparticles as promising vectors in lung cancer therapy. Pharmaceutics 13:423. https://doi.org/10.3390/pharmaceutics13030423

    Article  CAS  Google Scholar 

  8. García-Fernández C, Fornaguera C, Borrós S (2020) Nanomedicine in non-small cell lung cancer: from conventional treatments to immunotherapy. Cancers (Basel) 12:1609. https://doi.org/10.3390/cancers12061609

    Article  CAS  Google Scholar 

  9. Goudarzi F, Asadi A, Afsharpour M, Jamadi RH (2018) In vitro characterization and evaluation of the cytotoxicity effects of Nisin and Nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2) and blood (K562) cancer cell lines. AAPS PharmSciTech 19:1554–1566. https://doi.org/10.1208/s12249-018-0969-4

    Article  CAS  Google Scholar 

  10. Chang K-B, Shen C-C, Hsu S et al (2021) Functionalized collagen-silver nanocomposites for evaluation of the biocompatibility and vascular differentiation capacity of mesenchymal stem cells. Colloids Surfaces A Physicochem Eng Asp 624:126814. https://doi.org/10.1016/j.colsurfa.2021.126814

    Article  CAS  Google Scholar 

  11. Ko SW, Lee JY, Rezk AI et al (2021) In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization. Carbohydr Polym 269:118255. https://doi.org/10.1016/j.carbpol.2021.118255

    Article  CAS  Google Scholar 

  12. Fung MC, Bowen DL (1996) Silver products for medical indications: risk-benefit assessment. J Toxicol - Clin Toxicol 34:119–126

    Article  CAS  Google Scholar 

  13. Alexander JW (2009) History of the medical use of silver. Surg Infect (Larchmt) 10:289–292. https://doi.org/10.1089/sur.2008.9941

    Article  Google Scholar 

  14. Barillo DJ, Marx DE (2014) Silver in medicine: a brief history BC 335 to present. Burns 40:S3–S8. https://doi.org/10.1016/j.burns.2014.09.009

    Article  Google Scholar 

  15. Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833. https://doi.org/10.1021/ar3000212

    Article  CAS  Google Scholar 

  16. Khan B, Ho KT, Burgess RM (2020) Application of biomarker tools using bivalve models toward the development of adverse outcome pathways for contaminants of emerging concern. Environ Toxicol Chem 39:1472–1484. https://doi.org/10.1002/etc.4757

    Article  CAS  Google Scholar 

  17. Wang L, Wu WM, Bolan NS et al (2021) Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. J Hazard Mater 401:123415. https://doi.org/10.1016/j.jhazmat.2020.123415

    Article  CAS  Google Scholar 

  18. Genchi G, Carocci A, Lauria G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679

    Article  CAS  Google Scholar 

  19. Ağçeli GK, Hammachi H, Kodal SP et al (2020) A Novel approach to synthesize TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. J Inorg Organomet Polym Mater 30:3221–3229. https://doi.org/10.1007/s10904-020-01486-w

    Article  CAS  Google Scholar 

  20. Ajmal N, Saraswat K, Bakht MA et al (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12:244–254. https://doi.org/10.1080/17518253.2019.1629641

    Article  CAS  Google Scholar 

  21. Alavi M, Karimi N (2019) Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria. Artif Cells, Nanomedicine, Biotechnol 47:2405–2423. https://doi.org/10.1080/21691401.2019.1624560

    Article  CAS  Google Scholar 

  22. Alavi M, Kennedy JF (2021) Recent advances of fabricated and modified Ag, Cu, CuO and ZnO nanoparticles by herbal secondary metabolites, cellulose and pectin polymers for antimicrobial applications. Cellulose 28:3297–3310. https://doi.org/10.1007/s10570-021-03746-5

    Article  CAS  Google Scholar 

  23. Gaiser BK, Biswas A, Rosenkranz P et al (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235. https://doi.org/10.1039/c1em10060b

    Article  CAS  Google Scholar 

  24. García-Alonso J, Khan FR, Misra SK et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete nereis diversicolor. Environ Sci Technol 45:4630–4636. https://doi.org/10.1021/es2005122

    Article  CAS  Google Scholar 

  25. Walters CR, Cheng P, Pool E, Somerset V (2016) Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). J Toxicol Environ Heal - Part A Curr Issues 79:61–70. https://doi.org/10.1080/15287394.2015.1106357

    Article  CAS  Google Scholar 

  26. Heinlaan M, Kahru A, Kasemets K et al (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190. https://doi.org/10.1016/j.watres.2010.08.026

    Article  CAS  Google Scholar 

  27. Ale A, Liberatori G, Vannuccini ML et al (2019) Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat Toxicol 211:46–56. https://doi.org/10.1016/j.aquatox.2019.03.018

    Article  CAS  Google Scholar 

  28. Al-Asgah NA, Abdel-Warith AWA, Younis ESM, Allam HY (2015) Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22:543–550. https://doi.org/10.1016/j.sjbs.2015.01.002

    Article  CAS  Google Scholar 

  29. Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115. https://doi.org/10.1016/j.aquatox.2012.10.005

    Article  CAS  Google Scholar 

  30. Duran S, Tuncsoy M, Ay O et al (2017) Accumulation of copper oxide nanoparticles in gill, liver and muscle tissues of Clarias gariepinus. Toxicol Lett 280:S186. https://doi.org/10.1016/j.toxlet.2017.07.522

    Article  Google Scholar 

  31. Tunçsoy M, Duran S, Ay Ö et al (2017) Effects of copper oxide nanoparticles on antioxidant enzyme activities and on tissue accumulation of Oreochromis niloticus. Bull Environ Contam Toxicol 99:360–364. https://doi.org/10.1007/s00128-017-2129-z

    Article  CAS  Google Scholar 

  32. Griffitt RJ, Weil R, Hyndman KA et al (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186. https://doi.org/10.1021/es071235e

    Article  CAS  Google Scholar 

  33. Ates M, Demir V, Adiguzel R, Arslan Z (2013) Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (Carassius auratus). J Nanomater 2013:1–6. https://doi.org/10.1155/2013/460518

    Article  CAS  Google Scholar 

  34. Jurgelėnė Ž, Stankevičius M, Stankevičiūtė M et al (2021) Imaging of the internal chorion structure of rainbow trout Oncorhynchus mykiss live embryos and the distribution of quantum dots therein: towards a deeper understanding of potential nanotoxicity. Sci Total Environ 785:147302. https://doi.org/10.1016/j.scitotenv.2021.147302

    Article  CAS  Google Scholar 

  35. Pérez S, la Farré M, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. TrAC - Trends Anal Chem 28:820–832. https://doi.org/10.1016/j.trac.2009.04.001

    Article  CAS  Google Scholar 

  36. Bat L, Sezgin M, Üstün F, Şahin F (2012) Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turkish J Fish Aquat Sci 12:371–376. https://doi.org/10.4194/1303-2712-v12_2_24

    Article  Google Scholar 

  37. Krishna D, Sachan HK (2021) Nano-toxicity and aquatic food chain. In: Singh P, Singh R, Verma P, Bhadouria R, Kumar A, Kaushik M. (ed) Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems. Advances in science, technology and innovation. (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham.189–198. https://doi.org/10.1007/978-3-030-66956-0_13

  38. Mallik A, Xavier KAM, Naidu BC, Nayak BB (2021) Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. Sci Total Environ 779:146433. https://doi.org/10.1016/j.scitotenv.2021.146433

    Article  CAS  Google Scholar 

  39. Zhu X, Hondroulis E, Liu W, Li CZ (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9:1821–1830. https://doi.org/10.1002/smll.201201593

    Article  CAS  Google Scholar 

  40. Gomes HIO, Martins CSM, Prior JAV (2021) Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 11:964. https://doi.org/10.3390/nano11040964

    Article  CAS  Google Scholar 

  41. Matsuda Y, Torimoto T, Kameya T et al (2013) ZnS-AgInS2 nanoparticles as a temperature sensor. Sensors Actuators, B Chem 176:505–508. https://doi.org/10.1016/j.snb.2012.09.005

    Article  CAS  Google Scholar 

  42. Alavi M, Dehestaniathar S, Mohammadi S et al (2020) Antibacterial activities of phytofabricated ZnO and CuO NPs by Mentha pulegium leaf/flower mixture extract against antibiotic resistant bacteria. Adv Pharm Bull 11:497–504. https://doi.org/10.34172/apb.2021.057

    Article  CAS  Google Scholar 

  43. Aljelehawy Q, Karimi N, Alavi M (2021) Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of Daphne mucronata at different salt sources. Mater Technol 36:747–759. https://doi.org/10.1080/10667857.2020.1794280

  44. Shankar PD, Shobana S, Karuppusamy I et al (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb Technol 95:28–44. https://doi.org/10.1016/j.enzmictec.2016.10.015

    Article  CAS  Google Scholar 

  45. Mani R, Vijayakumar P, Dhas S, et al (2022) Biogenic nanoscale silver particles synthesis using butter fruit pulp extract and study of antibacterial efficacy against Providencia vermicola in rohu fish. J King Saud Univ - Sci 34:101814. https://doi.org/10.1016/j.jksus.2021.101814

  46. Li S, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L extract. Green Chem 9:852. https://doi.org/10.1039/b615357g

    Article  CAS  Google Scholar 

  47. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79. https://doi.org/10.1007/s00449-008-0224-6

    Article  CAS  Google Scholar 

  48. Singh J, Dutta T, Kim KH et al (2018) “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  49. Kumar B, Smita K, Cumbal L, Debut A (2017) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci 24:45–50. https://doi.org/10.1016/j.sjbs.2015.09.006

    Article  CAS  Google Scholar 

  50. Antony JJ, Nivedheetha M, Siva D et al (2013) Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids Surfaces B Biointerfaces 109:20–24. https://doi.org/10.1016/j.colsurfb.2013.03.020

    Article  CAS  Google Scholar 

  51. Baldissera MD, Souza CF, Zeppenfeld CC et al (2020) Dietary supplementation with nerolidol nanospheres improves growth, antioxidant status and fillet fatty acid profiles in Nile tilapia: benefits of nanotechnology for fish health and meat quality. Aquaculture 516:734635. https://doi.org/10.1016/j.aquaculture.2019.734635

    Article  CAS  Google Scholar 

  52. Rather MA, Bhat IA, Sharma N et al (2017) Synthesis and characterization of Azadirachta indica constructed silver nanoparticles and their immunomodulatory activity in fish. Aquac Res 48:3742–3754. https://doi.org/10.1111/are.13199

    Article  CAS  Google Scholar 

  53. Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12:925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  54. Vignesh V, Felix Anbarasi K, Karthikeyeni S et al (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surfaces A Physicochem Eng Asp 439:184–192. https://doi.org/10.1016/j.colsurfa.2013.04.011

    Article  CAS  Google Scholar 

  55. Choi JE, Kim S, Ahn JH et al (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159. https://doi.org/10.1016/j.aquatox.2009.12.012

    Article  CAS  Google Scholar 

  56. Lubick N (2008) Nanosilver toxicity: ions, nanoparticles — or both? Environ Sci Technol 42:8617. https://doi.org/10.1021/es8026314

    Article  CAS  Google Scholar 

  57. Mulenos MR, Liu J, Lujan H et al (2020) Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: evidence for the low toxicity of nanoparticles. Environ Chem Lett 18:1319–1328. https://doi.org/10.1007/s10311-020-00985-z

    Article  CAS  Google Scholar 

  58. Sakka Y, Skjolding LM, Mackevica A et al (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535. https://doi.org/10.1016/j.aquatox.2016.06.025

    Article  CAS  Google Scholar 

  59. Shen MH, Zhou XX, Yang XY et al (2015) Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci Rep 5:9674. https://doi.org/10.1038/srep09674

    Article  CAS  Google Scholar 

  60. Khoshnamvand M, Hao Z, Fadare OO et al (2020) Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere 258:127346. https://doi.org/10.1016/j.chemosphere.2020.127346

    Article  CAS  Google Scholar 

  61. Nie X, Zhu K, Zhao S et al (2020) Interaction of Ag+ with soil organic matter: elucidating the formation of silver nanoparticles. Chemosphere 243:125413. https://doi.org/10.1016/j.chemosphere.2019.125413

    Article  CAS  Google Scholar 

  62. Oya-Silva LF, Vicari T, Rodrigo Disner G et al (2021) Tissue-specific genotoxicity and antioxidant imbalance of titanium dioxide nanoparticles (NPTiO2) and inorganic lead (PbII) in a neotropical fish species. Environ Toxicol Pharmacol 82:103551. https://doi.org/10.1016/j.etap.2020.103551

    Article  CAS  Google Scholar 

  63. Bathi JR, Moazeni F, Upadhyayula VKK et al (2021) Behavior of engineered nanoparticles in aquatic environmental samples: current status and challenges. Sci Total Environ 793:148560. https://doi.org/10.1016/j.scitotenv.2021.148560

    Article  CAS  Google Scholar 

  64. He X, Aker WG, Fu PP, Hwang HM (2015) Toxicity of engineered metal oxide nanomaterials mediated by nano-bio-eco-interactions: a review and perspective. Environ Sci Nano 2:564–582. https://doi.org/10.1039/C5EN00094G

    Article  CAS  Google Scholar 

  65. Krishnasamy Sekar R, Sridhar A, Perumalsamy B et al (2020) In vitro antioxidant, antipathogenicity and cytotoxicity effect of silver nanoparticles fabricated by onion (Allium cepa L.) peel extract. Bionanoscience 10:235–248. https://doi.org/10.1007/s12668-019-00691-3

    Article  Google Scholar 

  66. OECD (2019) Test No. 203: fish, acute toxicity test, OECD Guidelines for the testing of chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264069961-en

  67. Finney DJ (1952) Probit analysis Cambridge University Press, New York. J Am Pharm Assoc (Scientific ed) 41:627. https://doi.org/10.1002/jps.3030411125

    Article  Google Scholar 

  68. Zhang Y, Lu X, Wang N et al (2016) Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China. Environ Sci Pollut Res 23:17801–17810. https://doi.org/10.1007/s11356-016-6948-y

    Article  CAS  Google Scholar 

  69. Dacie JV, Lewis SM (1975) Practical haematology, 5th edn. Churchill Livingstone, London

    Google Scholar 

  70. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0922-338X(96)89160-4

    Article  CAS  Google Scholar 

  71. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  Google Scholar 

  72. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Florida pp 283–284

  73. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  Google Scholar 

  74. Habig WH, Pabst M, Jakoby W (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139. https://doi.org/10.2307/j.ctv18b5cjk.40

    Article  CAS  Google Scholar 

  75. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. BBA - Gen Subj 582:67–78. https://doi.org/10.1016/0304-4165(79)90289-7

    Article  CAS  Google Scholar 

  76. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  77. Benítez V, Mollá E, Martín-Cabrejas MA et al (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48–57. https://doi.org/10.1007/s11130-011-0212-x

    Article  CAS  Google Scholar 

  78. Ahmed MJ, Murtaza G, Mehmood A, Bhatti TM (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Mater Lett 153:10–13. https://doi.org/10.1016/j.matlet.2015.03.143

    Article  CAS  Google Scholar 

  79. He Y, Du Z, Ma S et al (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour peel extract. Nanoscale Res Lett 11:300. https://doi.org/10.1186/s11671-016-1511-9

    Article  CAS  Google Scholar 

  80. Li S, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–885. https://doi.org/10.1039/b615357g

    Article  CAS  Google Scholar 

  81. Tripathy A, Raichur AM, Chandrasekaran N et al (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanoparticle Res 12:237–246. https://doi.org/10.1007/s11051-009-9602-5

    Article  CAS  Google Scholar 

  82. Whiteman SC, Yang Y, Jones JM, Spiteri MA (2008) FTIR spectroscopic analysis of sputum: preliminary findings on a potential novel diagnostic marker for COPD. Ther Adv Respir Dis 2:23–31. https://doi.org/10.1177/1753465807087972

    Article  CAS  Google Scholar 

  83. Jain N, Bhargava A, Majumdar S et al (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641. https://doi.org/10.1039/c0nr00656d

    Article  CAS  Google Scholar 

  84. Ghaseminezhad SM, Hamedi S, Shojaosadati SA (2012) Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbohydr Polym 89:467–472. https://doi.org/10.1016/j.carbpol.2012.03.030

    Article  CAS  Google Scholar 

  85. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363. https://doi.org/10.1016/j.jscs.2013.09.011

    Article  CAS  Google Scholar 

  86. Kumar KG, Avinash BS, Rahimi-Gorji M, Alarifi IM (2019) Optical and electrical properties of Ti1-XSnXO2 nanoparticles. J Mol Liq 293:111556. https://doi.org/10.1016/j.molliq.2019.111556

    Article  CAS  Google Scholar 

  87. Kanipandian N, Kannan S, Ramesh R et al (2014) Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull 49:494–502. https://doi.org/10.1016/j.materresbull.2013.09.016

    Article  CAS  Google Scholar 

  88. Judy JD, Kirby JK, Creamer C et al (2015) Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ Pollut 206:256–263. https://doi.org/10.1016/j.envpol.2015.07.002

    Article  CAS  Google Scholar 

  89. Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  90. Kleiven M, Macken A, Oughton DH (2019) Growth inhibition in Raphidocelis subcapita – Evidence of nanospecific toxicity of silver nanoparticles. Chemosphere 221:785–792. https://doi.org/10.1016/j.chemosphere.2019.01.055

    Article  CAS  Google Scholar 

  91. Kakakhel MA, Wu F, Feng H et al (2021) Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc Res Tech 84:1765–1774. https://doi.org/10.1002/jemt.23733

    Article  CAS  Google Scholar 

  92. Liaqat F, Hanif U, Bahadur S et al (2021) Comparative evaluation of the toxicological effect of silver salt (AgNO3) and silver nanoparticles on Cyprinus carpio synthesized by chemicals and marine algae using scanning electron microscopy. Microsc Res Tech 84:1531–1541. https://doi.org/10.1002/jemt.23710

    Article  CAS  Google Scholar 

  93. Khosravi-Katuli K, Shabani A, Paknejad H, Imanpoor MR (2018) Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): accumulation, physiology and histopathology. J Hazard Mater 359:373–381. https://doi.org/10.1016/j.jhazmat.2018.07.064

    Article  CAS  Google Scholar 

  94. Ramachandran R, Krishnaraj C, Kumar VKA et al (2018) In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. 3 Biotech 8:441. https://doi.org/10.1007/s13205-018-1457-y

    Article  Google Scholar 

  95. Krishnaraj C, Harper SL, Il YS (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). J Hazard Mater 301:480–491. https://doi.org/10.1016/j.jhazmat.2015.09.022

    Article  CAS  Google Scholar 

  96. Sarkar B, Netam SP, Mahanty A et al (2014) Toxicity evaluation of chemically and plant derived silver nanoparticles on zebrafish (Danio rerio). Proc Natl Acad Sci India Sect B - Biol Sci 84:885–892. https://doi.org/10.1007/s40011-013-0298-z

    Article  CAS  Google Scholar 

  97. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:1–9. https://doi.org/10.1155/2012/293784

    Article  CAS  Google Scholar 

  98. Girilal M, Krishnakumar V, Poornima P et al (2015) A comparative study on biologically and chemically synthesized silver nanoparticles induced heat shock proteins on fresh water fish Oreochromis niloticus. Chemosphere 139:461–468. https://doi.org/10.1016/j.chemosphere.2015.08.005

    Article  CAS  Google Scholar 

  99. Massarsky A, Dupuis L, Taylor J et al (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66. https://doi.org/10.1016/j.chemosphere.2013.02.060

    Article  CAS  Google Scholar 

  100. Olasagasti M, Gatti AM, Capitani F et al (2014) Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 34:562–575. https://doi.org/10.1002/jat.2975

    Article  CAS  Google Scholar 

  101. Il KJ, Cui R, Nam S-H et al (2016) Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicology 10:521–530. https://doi.org/10.3109/17435390.2015.1090028

    Article  CAS  Google Scholar 

  102. Croteau MN, Misra SK, Luoma SN, Valsami-Jones E (2014) Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. Environ Sci Technol 48:10929–10937. https://doi.org/10.1021/es5018703

    Article  CAS  Google Scholar 

  103. Utembe W, Wepener V, Yu IJ, Gulumian M (2018) An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. Environ Toxicol Chem 37:2972–2988. https://doi.org/10.1002/etc.4253

    Article  CAS  Google Scholar 

  104. Velicogna JR, Schwertfeger DM, Jesmer AH et al (2017) The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil. NanoImpact 6:11–18. https://doi.org/10.1016/j.impact.2017.03.001

    Article  Google Scholar 

  105. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185. https://doi.org/10.1016/j.nantod.2011.02.003

    Article  CAS  Google Scholar 

  106. Mansouri B, Maleki A, Johari SA et al (2016) Copper bioaccumulation and depuration in common carp (Cyprinus carpio) following co-exposure to TiO2 and CuO nanoparticles. Arch Environ Contam Toxicol 71:541–552. https://doi.org/10.1007/s00244-016-0313-5

    Article  CAS  Google Scholar 

  107. Sayadi MH, Pavlaki MD, Martins R et al (2021) Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Chemosphere 269:128689. https://doi.org/10.1016/j.chemosphere.2020.128689

    Article  CAS  Google Scholar 

  108. Mansouri B, Johari SA, Azadi NA, Sarkheil M (2018) Effects of waterborne ZnO nanoparticles and Zn2+ ions on the gills of rainbow trout (Oncorhynchus mykiss): bioaccumulation, histopathological and ultrastructural changes. Turkish J Fish Aquat Sci 18:739–746. https://doi.org/10.4194/1303-2712-v18_5_09

    Article  Google Scholar 

  109. Ali I, Khan S, Shah K et al (2021) Microscopic analysis of plant-mediated silver nanoparticle toxicity in rainbow trout fish (Oncorhynchus mykiss). Microsc Res Tech 84:2302–2310. https://doi.org/10.1002/jemt.23785

    Article  CAS  Google Scholar 

  110. Scown TM, Santos EM, Johnston BD et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534. https://doi.org/10.1093/toxsci/kfq076

    Article  CAS  Google Scholar 

  111. Kaya H, Aydin F, Gürkan M et al (2015) Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 40:936–947. https://doi.org/10.1016/j.etap.2015.10.001

    Article  CAS  Google Scholar 

  112. Yoo-iam M, Chaichana R, Satapanajaru T (2014) Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab 26:257–265. https://doi.org/10.3184/095422914X14144332205573

    Article  CAS  Google Scholar 

  113. Johari SA, Kalbassi MR, Yu IJ, Lee JH (2015) Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Path 24:995–1007. https://doi.org/10.1007/s00580-014-2019-2

    Article  CAS  Google Scholar 

  114. Xiao B, Wang X, Yang J et al (2020) Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: the mechanisms and influence of natural organic matter. Ecotoxicol Environ Saf 194:110454. https://doi.org/10.1016/j.ecoenv.2020.110454

    Article  CAS  Google Scholar 

  115. Thummabancha K, Onparn N, Srisapoome P (2016) Analysis of hematologic alterations, immune responses and metallothionein gene expression in Nile tilapia (Oreochromis niloticus) exposed to silver nanoparticles. J Immunotoxicol 13:909–917. https://doi.org/10.1080/1547691X.2016.1242673

    Article  CAS  Google Scholar 

  116. Dhanapakiam P, Ramasamy VK (2001) Toxic effects of copper and zinc mixtures on some haematological and biochemical parameters in common carp, Cyprinus carpio (Linn). J Environ Biol 22:105–111

    CAS  Google Scholar 

  117. Alkaladi A, El-Deen NAMN, Afifi M, Zinadah OAA (2015) Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi J Biol Sci 22:556–563. https://doi.org/10.1016/j.sjbs.2015.02.012

    Article  CAS  Google Scholar 

  118. Remyla SR, Ramesh M, Sajwan KS, Senthil Kumar K (2008) Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish Physiol Biochem 34:169–174. https://doi.org/10.1007/s10695-007-9157-2

    Article  CAS  Google Scholar 

  119. Lavanya S, Ramesh M, Kavitha C, Malarvizhi A (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82:977–985. https://doi.org/10.1016/j.chemosphere.2010.10.071

    Article  CAS  Google Scholar 

  120. Kuhn V, Diederich L, Keller TCS et al (2017) Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. antioxid redox signal 26:718–742

    Article  CAS  Google Scholar 

  121. Levine EA, Rosen AL, Sehgal LR et al (1990) Physiologic effects of acute anemia: implications for a reduced transfusion trigger. Transfusion 30:11–14. https://doi.org/10.1046/j.1537-2995.1990.30190117621.x

    Article  CAS  Google Scholar 

  122. Tsai AG, Acero C, Nance PR et al (2005) Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol - Hear Circ Physiol 288:H1730–H1739. https://doi.org/10.1152/ajpheart.00998.2004

    Article  CAS  Google Scholar 

  123. Das S, Patra A, Mandal A et al (2021) Study on impacts of direct supplementation of choline into semi-intensive fish culture system based on haematopoietic alterations. Environ Sustain Indic 9:100089. https://doi.org/10.1016/j.indic.2020.100089

    Article  Google Scholar 

  124. Fazio F, Piccione G, Arfuso F, Faggio C (2015) Peripheral blood and head kidney haematopoietic tissue response to experimental blood loss in mullet (Mugil cephalus). Mar Biol Res 11:197–202. https://doi.org/10.1080/17451000.2014.898850

    Article  Google Scholar 

  125. Khabbazi M, Harsij M, Hedayati SAA et al (2014) Effect of CuO nanoparticles on some hematological indices of rainbow trout Oncorhynchus mykiss and their potential toxicity. Nanomedicine J 2:67–73. https://doi.org/10.7508/nmj.2015.01.008

    Article  Google Scholar 

  126. Farmen E, Mikkelsen HN, Evensen, et al (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. https://doi.org/10.1016/j.aquatox.2011.07.007

    Article  CAS  Google Scholar 

  127. Nussey G, Van Vuren JHJ, du Preez HH (1995) Effect of copper on the haematology and osmoregulation of the Mozambique tilapia, Oreochromis mossambicus (Cichlidae). Comp Biochem Physiol Part C Comp 111:369–380. https://doi.org/10.1016/0742-8413(95)00063-1

    Article  Google Scholar 

  128. Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116–117:90–101. https://doi.org/10.1016/j.aquatox.2012.02.032

    Article  CAS  Google Scholar 

  129. Remya AS, Ramesh M, Saravanan M et al (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J King Saud Univ - Sci 27:151–160. https://doi.org/10.1016/j.jksus.2014.11.002

    Article  Google Scholar 

  130. Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951. https://doi.org/10.1007/s10646-009-0357-7

    Article  CAS  Google Scholar 

  131. Smith SD, Bolwell BJ, Rybicki LA et al (2007) Autologous hematopoietic stem cell transplantation in peripheral T-cell lymphoma using a uniform high-dose regimen. Bone Marrow Transplant 40:239–243. https://doi.org/10.1038/sj.bmt.1705712

    Article  CAS  Google Scholar 

  132. Cogun HY, Firat Ö, Firat Ö et al (2012) Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. J Biochem Mol Toxicol 26:117–122. https://doi.org/10.1002/jbt.20417

    Article  CAS  Google Scholar 

  133. Pirsaheb M, Azadi NA, Miglietta ML et al (2019) Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere 215:904–915. https://doi.org/10.1016/j.chemosphere.2018.10.111

    Article  CAS  Google Scholar 

  134. Kappus H (1985) Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. Oxidative Stress 273:273–310. https://doi.org/10.1016/b978-0-12-642760-8.50016-8

    Article  Google Scholar 

  135. Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci (China) 24:1091–1098. https://doi.org/10.1016/S1001-0742(11)60845-0

    Article  CAS  Google Scholar 

  136. Zhu X, Zhu L, Lang Y, Chen Y (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27:1979–1985. https://doi.org/10.1897/07-573.1

    Article  CAS  Google Scholar 

  137. Atli G, Alptekin Ö, Tükel S, Canli M (2006) Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp Biochem Physiol - C Toxicol Pharmacol 143:218–224. https://doi.org/10.1016/j.cbpc.2006.02.003

    Article  CAS  Google Scholar 

  138. Hansen BH, Rømma S, Garmo A et al (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol - C Toxicol Pharmacol 143:263–274. https://doi.org/10.1016/j.cbpc.2006.02.010

    Article  CAS  Google Scholar 

  139. Husak VV, Mosiichuk NM, Kubrak OI et al (2018) Acute exposure to copper induces variable intensity of oxidative stress in goldfish tissues. Fish Physiol Biochem 44:841–852. https://doi.org/10.1007/s10695-018-0473-5

    Article  CAS  Google Scholar 

  140. Vieira MC, Torronteras R, Córdoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol Environ Saf 78:212–217. https://doi.org/10.1016/j.ecoenv.2011.11.015

    Article  CAS  Google Scholar 

  141. Fırat Ö, Bozat RC (2019) Assessment of biochemical and toxic responses induced by titanium dioxide nanoparticles in Nile tilapia Oreochromis niloticus. Hum Ecol Risk Assess 25:1438–1447. https://doi.org/10.1080/10807039.2018.1465338

    Article  CAS  Google Scholar 

  142. Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci (China) 21:1459–1466. https://doi.org/10.1016/s1001-0742(08)62440-7

    Article  CAS  Google Scholar 

  143. Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23:754–760. https://doi.org/10.1016/j.sjbs.2016.06.008

    Article  CAS  Google Scholar 

  144. Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173. https://doi.org/10.1002/etc.2038

    Article  CAS  Google Scholar 

  145. Massarsky A, Abraham R, Nguyen KC et al (2014) Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comp Biochem Physiol - C Toxicol Pharmacol 159:10–21. https://doi.org/10.1016/j.cbpc.2013.09.008

    Article  CAS  Google Scholar 

  146. Lee B, Duong CN, Cho J, et al (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol. 2012:262670. https://doi.org/10.1155/2012/262670

  147. Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19:105–123. https://doi.org/10.1007/s10646-009-0395-1

    Article  CAS  Google Scholar 

  148. Chae YJ, Pham CH, Lee J et al (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327. https://doi.org/10.1016/j.aquatox.2009.07.019

    Article  CAS  Google Scholar 

  149. Al-Abdan MA, Bin-Jumah MN, Alarifi S (2020) Exploration of cadmium dioxide nanoparticles on bioaccumulation, oxidative stress, and carcinogenic potential in Oreochromis mossambicus L. Oxid Med Cell Longev 2020:1–11. https://doi.org/10.1155/2020/5407159

    Article  CAS  Google Scholar 

  150. Alak G, Ucar A, Parlak V et al (2020) Antioxidant potential of ulexite in zebrafish brain: assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biol Trace Elem Res 199:1092–1099. https://doi.org/10.1007/s12011-020-02231-7

    Article  CAS  Google Scholar 

  151. Hoseinifar SH, Yousefi S, Van Doan H et al (2021) Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev Fish Sci Aquac 29:198–217. https://doi.org/10.1080/23308249.2020.1795616

    Article  Google Scholar 

  152. Reddy UA, Prabhakar PV, Mahboob M (2017) Biomarkers of oxidative stress for in vivo assessment of toxicological effects of iron oxide nanoparticles. Saudi J Biol Sci 24:1172–1180. https://doi.org/10.1016/j.sjbs.2015.09.029

    Article  CAS  Google Scholar 

  153. Jifa W, Yu Z, Xiuxian S, You W (2006) Response of integrated biomarkers of fish (Lateolabrax japonicus) exposed to benzo[a]pyrene and sodium dodecylbenzene sulfonate. Ecotoxicol Environ Saf 65:230–236. https://doi.org/10.1016/j.ecoenv.2005.08.002

    Article  CAS  Google Scholar 

  154. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett 179:93–100. https://doi.org/10.1016/j.toxlet.2008.04.009

    Article  CAS  Google Scholar 

  155. Hajirezaee S, Mohammadi G, Naserabad SS (2020) The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture 518:734734. https://doi.org/10.1016/j.aquaculture.2019.734734

    Article  CAS  Google Scholar 

  156. Abdelazim AM, Saadeldin IM, Swelum AAA et al (2018) Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxid Med Cell Longev 2018:6926712. https://doi.org/10.1155/2018/6926712

    Article  CAS  Google Scholar 

  157. Cristina Soare L, Păunescu A, Cristina Maria P (2019) The morphophysiological, histological, and biochemical response of some nontarget organisms to the stress induced by the pesticides in the environment. In: Larramendy, Soloneski (ed) Pesticides — use and misuse and their impact in the environment. IntechOpen. https://doi.org/10.5772/intechopen.84332

  158. Elgendy MY, Abumourad IK, Ali SEM et al (2017) Health status and genotoxic effects of metal pollution in Tilapia zillii and Solea vulgaris from polluted aquatic habitats. Int J Zool Res 13:54–63. https://doi.org/10.3923/ijzr.2017.54.63

    Article  CAS  Google Scholar 

  159. Ossana NA, Baudou FG, Castañé PM et al (2019) Histological, genotoxic, and biochemical effects on Cnesterodon decemmaculatus (Jenyns 1842) (Cyprinodontiformes, Poeciliidae): early response bioassays to assess the impact of receiving waters. J Toxicol 2019:1–13. https://doi.org/10.1155/2019/4687685

    Article  CAS  Google Scholar 

  160. Nero V, Farwell A, Lister A et al (2006) Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicol Environ Saf 63:365–377. https://doi.org/10.1016/j.ecoenv.2005.04.014

    Article  CAS  Google Scholar 

  161. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/2F978-3-7643-8340-4_6

    Article  Google Scholar 

  162. Butchiram MS, Vijaya Kumar M, Tilak KS (2013) Studies on the histopathological changes in selected tissues of fish Labeo rohita exposed to phenol. J Environ Biol 34:247–251

    CAS  Google Scholar 

  163. Mansouri B, Maleki A, Johari SA et al (2017) Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles. Chem Ecol 33:295–308. https://doi.org/10.1080/02757540.2017.1301436

    Article  CAS  Google Scholar 

  164. Rajkumar KS, Kanipandian N, Thirumurugan R (2016) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 6:19–29. https://doi.org/10.1007/s13204-015-0417-7

    Article  CAS  Google Scholar 

  165. Cassar S, Adatto I, Freeman JL et al (2020) Use of zebrafish in drug discovery toxicology. Chem Res Toxicol 33:95–118. https://doi.org/10.1021/acs.chemrestox.9b00335

    Article  CAS  Google Scholar 

  166. Chen J, Dong X, Xin Y, Zhao M (2011) Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 101:493–499. https://doi.org/10.1016/j.aquatox.2010.12.004

    Article  CAS  Google Scholar 

  167. Jang MH, Kim WK, Lee SK et al (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48:11568–11574. https://doi.org/10.1021/es5022813

    Article  CAS  Google Scholar 

  168. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. https://doi.org/10.1186/1743-8977-10-15

    Article  CAS  Google Scholar 

  169. Vali S, Mohammadi G, Tavabe KR et al (2020) The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol Environ Saf 194:110353. https://doi.org/10.1016/j.ecoenv.2020.110353

    Article  CAS  Google Scholar 

  170. Hall AP, Elcombe CR, Foster JR et al (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes-conclusions from the 3rd international ESTP expert workshop. Toxicol Pathol 40:971–994

    Article  CAS  Google Scholar 

  171. Schramm M, Müller E, Triebskorn R (1998) Brown trout (Salmo trutta) liver ultrastructure as a biomarker for assessment of small stream pollution. Biomarkers 3:93–108. https://doi.org/10.1080/135475098231264

    Article  CAS  Google Scholar 

  172. Bernet D, Schmidt H, Meier W et al (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x

    Article  Google Scholar 

  173. Rodrigues S, Antunes SC, Nunes B, Correia AT (2019) Histopathological effects of the antibiotic erythromycin on the freshwater fish species Oncorhynchus mykiss. Ecotoxicol Environ Saf 181:1–10. https://doi.org/10.1016/j.ecoenv.2019.05.067

    Article  CAS  Google Scholar 

  174. da Cunha RLD, de Brito-Gitirana L (2020) Effects of titanium dioxide nanoparticles on the intestine, liver, and kidney of Danio rerio. Ecotoxicol Environ Saf 203:111032. https://doi.org/10.1016/j.ecoenv.2020.111032

    Article  CAS  Google Scholar 

  175. Huang CW, Li SW, Liao VHC (2019) Long-term sediment exposure to ZnO nanoparticles induces oxidative stress. Caenorhabditis elegans Environ Sci Nano 6:2602–2614. https://doi.org/10.1039/c9en00039a

    Article  CAS  Google Scholar 

  176. Kim KS, Lee D, Song CG, Kang PM (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10:2709–2723.https://doi.org/10.2217/2Fnnm.15.108

    Article  CAS  Google Scholar 

  177. Maharajan A, Kitto MR, Paruruckumani PS, Ganapiriya V (2016) Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper. J Basic Appl Zool 77:21–30. https://doi.org/10.1016/j.jobaz.2016.02.001

    Article  CAS  Google Scholar 

  178. Yao JW, Liu J, Kong XZ et al (2012) Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death. Toxicol Appl Pharmacol 259:227–235. https://doi.org/10.1016/j.taap.2011.12.027

    Article  CAS  Google Scholar 

  179. Kobayashi M, Li L, Iwamoto N et al (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502. https://doi.org/10.1128/mcb.01080-08

    Article  CAS  Google Scholar 

  180. Wu P, Liu Y, Jiang WD et al (2017) A comparative study on antioxidant system in fish hepatopancreas and intestine affected by choline deficiency: different change patterns of varied antioxidant enzyme genes and nrf2 signaling factors. PLoS ONE 12:e0169888. https://doi.org/10.1371/journal.pone.0169888

    Article  CAS  Google Scholar 

  181. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34:145–169. https://doi.org/10.1016/S0891-5849(02)01197-8

    Article  CAS  Google Scholar 

  182. Neefjes VME, Evelo CTA, Baars LGM, Blanco CE (1999) Erythrocyte glutathione S transferase as a marker of oxidative stress at birth. Arch Dis Child Fetal Neonatal Ed 81:F130–F133. https://doi.org/10.1136/fn.81.2.F130

    Article  CAS  Google Scholar 

  183. Yeo MK, Park HG (2012) Gene expression in zebrafish embryos following exposure to Cu-doped TiO2 and pure TiO2 nanometer-sized photocatalysts. Mol Cell Toxicol 8:127–137. https://doi.org/10.1007/s13273-012-0016-6

    Article  CAS  Google Scholar 

  184. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  185. Oliva M, Gravato C, Guilhermino L et al (2014) EROD activity and cytochrome P4501A induction in liver and gills of Senegal sole Solea senegalensis from a polluted Huelva Estuary (SW Spain). Comp Biochem Physiol Part - C Toxicol Pharmacol 166:134–144. https://doi.org/10.1016/j.cbpc.2014.07.010

    Article  CAS  Google Scholar 

  186. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  187. Nakajima H, Nakajima-Takagi Y, Tsujita T et al (2011) Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles. PLoS ONE 6:e26884. https://doi.org/10.1371/journal.pone.0026884

    Article  CAS  Google Scholar 

  188. Wu G, Fang YZ, Yang S et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  Google Scholar 

  189. Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  Google Scholar 

  190. Nabavi SF, Barber AJ, Spagnuolo C et al (2016) Nrf2 as molecular target for polyphenols: a novel therapeutic strategy in diabetic retinopathy. Crit Rev Clin Lab Sci 53:293–312. https://doi.org/10.3109/10408363.2015.1129530

    Article  CAS  Google Scholar 

  191. Zhang XD, Zhu YF, Cai LS, Wu TX (2008) Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture 280:136–139. https://doi.org/10.1016/j.aquaculture.2008.05.010

    Article  CAS  Google Scholar 

  192. Zheng JL, Zhu QL, Wu CW et al (2016) Zinc acclimation mitigated high zinc induced oxidative stress by enhancing antioxidant defenses in large yellow croaker Pseudosciaena crocea. Aquat Toxicol 172:21–29. https://doi.org/10.1016/j.aquatox.2015.12.009

    Article  CAS  Google Scholar 

  193. Pillet M, Castaldo G, De Weggheleire S et al (2019) Limited oxidative stress in common carp (Cyprinus carpio, L., 1758) exposed to a sublethal tertiary (Cu, Cd and Zn) metal mixture. Comp Biochem Physiol Part - C Toxicol Pharmacol 218:70–80. https://doi.org/10.1016/j.cbpc.2019.01.003

    Article  CAS  Google Scholar 

  194. Wu P, Jiang WD, Liu Y et al (2014) Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 38:374–382. https://doi.org/10.1016/j.fsi.2014.03.032

    Article  CAS  Google Scholar 

  195. Li Z-H, Li P, Shi Z-C (2015) Responses of the hepatic glutathione antioxidant defense system and related gene expression in juvenile common carp after chronic treatment with tributyltin. Ecotoxicology 24:700–705. https://doi.org/10.1007/s10646-014-1416-2

    Article  CAS  Google Scholar 

  196. Hoseinifar SH, Ahmadi A, Khalili M et al (2017) The study of antioxidant enzymes and immune-related genes expression in common carp (Cyprinus carpio) fingerlings fed different prebiotics. Aquac Res 48:5447–5454. https://doi.org/10.1111/are.13359

    Article  CAS  Google Scholar 

  197. Xing H, Zhang Z, Yao H et al (2014) Effects of atrazine and chlorpyrifos on cytochrome P450 in common carp liver. Chemosphere 104:244–250. https://doi.org/10.1016/j.chemosphere.2014.01.002

    Article  CAS  Google Scholar 

  198. Zhang C, Zhang J, Fan W et al (2019) Effects of dietary Lactobacillus delbrueckii on growth performance, body composition, digestive and absorptive capacity, and gene expression of common carp (Cyprinus carpio Huanghe var). Aquac Nutr 25:166–175. https://doi.org/10.1111/anu.12840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Rajkumar Krishnasamy Sekar gratefully acknowledges the Department of Science and Technology (DST), Govt. of India, for providing fellowship under the DST-INSPIRE Fellowship (IF140546) scheme. The authors thank National Centre for Alternatives to Animal Experiments (NCAAE) under UGC-CPEPA scheme, Government of India (F.No.2-1/2013(NS/PE)), for RTqPCR studies in this work. The authors highly acknowledge the UGC-SAP-DRS-II (F.3-9/2013(SAP-II)), Department of Science and Technology Fund for Improvement of Science and Technology Infrastructure (DST-FIST)-Level-I (stage-II) (Ref. No. SR/FST/LSI-647/2015(C) Date.11.08.2016) and Department of Science and Technology Promotion of University Research and Scientific Excellence (DST PURSE Phase—II) (Ref. No. SR/PURSE PHASE 2/16(G)/&16(C) Date. 21.02.2017) for the instrumentation facility to the Department of Animal Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India. The authors also thank “RUSA, 2.0—Biological Sciences, Bharathidasan University.”

Author information

Authors and Affiliations

Authors

Contributions

Investigation, methodology, data curation, writing — original draft: Rajkumar Krishnasamy Sekar; methodology, resources: Ramkumar Arunachalam, Murugadas Anbazhagan, and Sivagaami Palaniyappan; formal analysis, validation, writing — review and editing: Srinivasan Veeran and Arun Sridhar; conceptualization, project administration, supervision, validation, visualization, writing — review and editing: Thirumurugan Ramasamy. All authors read and approved the manuscript.

Corresponding author

Correspondence to Thirumurugan Ramasamy.

Ethics declarations

Ethical Approval

Institutional Animal Ethical Committee (IAEC) of Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, has approved this research work (Ref. No: BDU/IAEC/P28/2018).

Consent for Publication

All authors read and approved the final manuscript and have complete access to study data and agree with this manuscript publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised. equations 1 and 2 should be: 1. \(\mathrm{MCV }(\mathrm{cu}.\mathrm{ microns}) =\mathrm{ Hct}/\mathrm{RBC }(10^6/\mathrm{ml})\) 2. \(\mathrm{MCH }(\mathrm{pg}) = [\mathrm{Hb }(\mathrm{g}/\mathrm{l}) \times 10]/\mathrm{RBC }(10^6/\mathrm{ml})\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnasamy Sekar, R., Arunachalam, R., Anbazhagan, M. et al. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 201, 904–925 (2023). https://doi.org/10.1007/s12011-022-03164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03164-z

Keywords

Navigation