Skip to main content

Advertisement

Log in

A Novel Approach to Synthesize TiO2 Nanoparticles: Biosynthesis by Using Streptomyces sp. HC1

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A simple, yet effective and rapid approach for the synthesis of titanium dioxide nanoparticles (TiO2 NPs) using Streptomyces sp. HC1 was developed. The in vitro activity of TiO2 NPs was demonstrated against human pathogenic bacteria and fungi. The synthesized nanoparticles were characterized using various methods and instruments, such as Zetasizer, X-ray diffraction, Fourier transmission infrared spectroscopy, atomic force microscopy, and scanning electron microscopy. TiO2 NPs were observed to be spherical in shape with size in the range of 30 to 70 nm. Antimicrobial activities of TiO2 NPs against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 35218, Candida albicans, ATCC 10231, and Aspergillus niger ATCC 6275 were evaluated. It was observed that TiO2 NPs showed higher antimicrobial activity against bacteria (12 mm) than against fungi. Moreover, TiO2 NPs also showed potent antibiofilm activity against Pseudomonas aeruginosa ATCC 27853. Hence, the present study highlights the biological synthesis and characterization of TiO2 NPs, and their applications in the field of biomedical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Simonis, S. Schilthuizen, Nanotechnology Innovation Opportunities for Tomorrow’s Defence (TNO Science & Industry, Delft, 2006)

    Google Scholar 

  2. K. Khosravi, M.E. Hoque, B. Dimock, H. Hintelmann, C.D. Metcalfe, A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal. Chim. Acta 713, 86–91 (2012)

    Article  CAS  Google Scholar 

  3. E.R. Kisin, A.R. Murray, M.J. Keane, X.C. Shi, D. Schwegler-Berry, O. Gorelik, S. Arepalli, V. Castranova, W.E. Wallace, V.E. Kagan, A.A. Shvedova, Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health. A 70, 2071–2079 (2007)

    Article  CAS  Google Scholar 

  4. T.A. Robertson, W.Y. Sanchez, M.S. Roberts, Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotechnol. 6, 452–468 (2010)

    Article  CAS  Google Scholar 

  5. K. Sanders, L.L. Degn, W.R. Mundy, R.M. Zucker, K. Dreher, B.Z. Zhao, J.E. Roberts, In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol. Appl. Pharm. 258, 226–236 (2012)

    Article  CAS  Google Scholar 

  6. P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanoparticle Res. 10, 507–517 (2008)

    Article  CAS  Google Scholar 

  7. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface 145, 83–96 (2009)

    Article  CAS  Google Scholar 

  8. A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 61, 151–170 (2007)

    Article  CAS  Google Scholar 

  9. S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J. Phys. A. 78, 101–105 (2004)

    Google Scholar 

  10. J.G. Parsons, J.L. Gardea-Torresdey, Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev. Environ. Sci. 5, 463–485 (2007)

    CAS  Google Scholar 

  11. S. Jomini, H. Clivot, P. Bauda, C. Pagnout, Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environ. Pollut. 202, 196–204 (2015)

    Article  CAS  Google Scholar 

  12. R.P. Hu, X.L. Gong, Y.M. Duan, N. Li, Y. Che, Y.L. Cui, M. Zhou, C. Liu, H. Wang, F.S. Hong, Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31, 8043–8050 (2010)

    Article  CAS  Google Scholar 

  13. I. Iavicoli, V. Leso, L. Fontana, A. Bergamaschi, Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur. Rev. Med. Pharmacol. 15, 481–508 (2011)

    CAS  Google Scholar 

  14. J.X. Wang, C.Y. Chen, Y. Liu, F. Jiao, W. Li, F. Lao, Y.F. Li, B. Li, C.C. Ge, G.Q. Zhou, Y.X. Gao, Y.L. Zhao, Z.F. Chai, Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 183, 72–80 (2008)

    Article  CAS  Google Scholar 

  15. A.K. Jha, K. Prasad, A.R. Kulkarni, Synthesis of TiO2 nanoparticles using microorganisms. Colloid Surf. B. 71, 226–229 (2009)

    Article  CAS  Google Scholar 

  16. A.V. Kirthi, A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A.A. Zahir, C. Kamaraj, A. Bagavan, Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater. Lett. 65, 2745–2747 (2011)

    Article  CAS  Google Scholar 

  17. G. Rajakumar, A.A. Rahuman, B. Priyamvada, V.G. Khanna, D.K. Kumar, P.J. Sujin, Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater. Lett. 68, 115–117 (2012)

    Article  CAS  Google Scholar 

  18. G. Rajakumar, A.A. Rahuman, S.M. Roopan, V.G. Khanna, G. Elango, C. Kamaraj, A.A. Zahir, K. Velayutham, Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta A-M. 91, 23–29 (2012)

    Article  CAS  Google Scholar 

  19. Y. Wang, S.L.I. Chan, R. Amal, Y.R. Shen, K. Kiatkittipong. XRD antisıoptric broading of nano-crystallites. Int. Centre Diff. Data (2011)

  20. I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H.N. Bhatti, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman, M. Abbas, Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv. Powder Technol. 28, 2796–2796 (2017)

    Article  Google Scholar 

  21. R. Khan, M.H. Fulekar, Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J. Colloid Interface Sci. 475, 184–191 (2016)

    Article  CAS  Google Scholar 

  22. Z. Shervani, Y. Yamamoto, Size and morphology controlled synthesis of gold nanoparticles in green solvent effect of reducing agents. Mater. Lett. 65(92–95), 22 (2011)

    Google Scholar 

  23. G. Bhumi, M. Linga Rao, N. Savithramma, Green synthesis of silver nanoparticles from the leaf extract of adhatoda vasica nees and assessment of its antibacterial activity. Asian J. Pharm. Clin. Res. 8, 62–67 (2014)

    Google Scholar 

  24. H.H. Chang, T.J. Cheng, C.P. Huang, G.S. Wang, Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes. Sci. Total Environ. 601, 886–894 (2017)

    Article  Google Scholar 

  25. M.I. Din, R. Rehan, Synthesis, characterization, and applications of copper nanoparticles. Anal. Lett. 50, 50–62 (2017)

    Article  CAS  Google Scholar 

  26. S. Gelover, L.A. Gomez, K. Reyes, M.T. Leal, A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res. 40, 3274–3280 (2006)

    Article  CAS  Google Scholar 

  27. D. Mitoraj, A. Janczyk, M. Strus, H. Kisch, G. Stochel, P.B. Heczko, W. Macyk, Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem. Photobiol. Sci. 6, 642–648 (2007)

    Article  CAS  Google Scholar 

  28. Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota, A. Fujishima, Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J. Biomed. Mater. Res. 58, 97–101 (2001)

    Article  CAS  Google Scholar 

  29. K. Shiraishi, H. Koseki, T. Tsurumoto, K. Baba, M. Naito, K. Nakayama, H. Shindo, Antibacterial metal implant with a TiO(2)-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf. Interface Anal. 41, 17–22 (2009)

    Article  CAS  Google Scholar 

  30. R.J.B. Pinto, P. Marques, C.P. Neto, T. Trindade, S. Daina, P. Sadocco, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. 5, 2279–2289 (2009)

    Article  CAS  Google Scholar 

  31. M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112, 841–852 (2012)

    Article  CAS  Google Scholar 

  32. K. Markowska, A.M. Grudniak, K.I. Wolska, Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta. Biochim. Pol. 60, 523–530 (2013)

    PubMed  Google Scholar 

  33. M.G. Vincent, N.P. John, M. Sevanan, In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. JAPS 4, 41–46 (2014)

    CAS  Google Scholar 

Download references

Funding

This study was funded by Scientific Research Project Coordination Units of Hacettepe University (Grant Number FHD-2016-12767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Koşarsoy Ağçeli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağçeli, G.K., Hammachi, H., Kodal, S.P. et al. A Novel Approach to Synthesize TiO2 Nanoparticles: Biosynthesis by Using Streptomyces sp. HC1. J Inorg Organomet Polym 30, 3221–3229 (2020). https://doi.org/10.1007/s10904-020-01486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01486-w

Keywords

Navigation