Skip to main content

Advertisement

Log in

Progress of Selenium Deficiency in the Pathogenesis of Arthropathies and Selenium Supplement for Their Treatment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium, an essential trace element for human health, exerts an indispensable effect in maintaining physiological homeostasis and functions in the body. Selenium deficiency is associated with arthropathies, such as Kashin-Beck disease, rheumatoid arthritis, osteoarthritis, and osteoporosis. Selenium deficiency mainly affects the normal physiological state of bone and cartilage through oxidative stress reaction and immune reaction. This review aims to explore the role of selenium deficiency and its mechanisms existed in the pathogenesis of arthropathies. Meanwhile, this review also summarized various experiments to highlight the crucial functions of selenium in maintaining the homeostasis of bone and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

CAT:

Catalase

COX-2:

Cyclooxygenase-2

ECM:

Extracellular matrix

GPX:

Glutathione peroxidase

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

KBD:

Kashin-Beck disease

miR-138-5p:

MicroRNAs-138-5p

MMP13:

Matrix metalloproteinase 13

mTOR:

Mammalian target of rapamycin

OA:

Osteoarthritis

OP:

Osteoporosis

OPG:

Osteoprotegerin

PI3K:

Phosphatidylinositol 3-kinase

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SANFH:

Steroid-induced femoral head necrosis

Sec:

Selenocysteine

Se-CPC:

Selenium-modified calcium phosphate cement

SelM:

Selenoprotein M

SeMet:

Selenomethionine

SeNPs:

Selenium nanoparticles

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor alpha

TRAP:

Tartrate-resistant acid phosphatase

TrxR:

Thioredoxin reductase

References

  1. Small-Howard AL, Berry MJ (2005) Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes. Biochem Soc Trans 33:1493–1497

    Article  CAS  PubMed  Google Scholar 

  2. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  3. Berry MJ, Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Martin GW et al (2001) Selenocysteine incorporation directed from the 3′UTR: characterization of eukaryotic EFsec and mechanistic implications. BioFactors 14:17–24

    Article  CAS  PubMed  Google Scholar 

  4. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  5. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  PubMed  Google Scholar 

  6. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  CAS  PubMed  Google Scholar 

  7. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S-1459S

    Article  CAS  PubMed  Google Scholar 

  8. Schomburg L (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8:160–171

    Article  PubMed  CAS  Google Scholar 

  9. Hawkes WC, Kelley DS, Taylor PC (2001) The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 81:189–213

    Article  CAS  PubMed  Google Scholar 

  10. Wood SM, Beckham C, Yosioka A, Darban H, Watson RR (2000) beta-carotene and selenium supplementation enhances immune response in aged humans. Integr Med 2:85–92

    Article  CAS  PubMed  Google Scholar 

  11. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  12. Kieliszek M (2019) Selenium–fascinating microelement, properties and sources in food. Molecules 24:1298

    Article  CAS  PubMed Central  Google Scholar 

  13. Sunde RA (1997) Selenium. In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. CRC Press, Boca Raton, pp 493–556

    Google Scholar 

  14. Allan CB, Lacourciere GM, Stadtman TC (1999) Responsiveness of selenoproteins to dietary selenium. Annu Rev Nutr 19:1–16

    Article  CAS  PubMed  Google Scholar 

  15. Diplock AT (1994) Antioxidants and disease prevention. Mol Aspects Med 15:293–376

    Article  CAS  PubMed  Google Scholar 

  16. Spallholz JE, Boylan LM, Larsen HS (1990) Advances in understanding selenium’s role in the immune system. Ann N Y Acad Sci 587:123–139

    Article  CAS  PubMed  Google Scholar 

  17. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J et al (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285:1393–1396

    Article  CAS  PubMed  Google Scholar 

  18. Arteel GE, Briviba K, Sies H (1999) Protection against peroxynitrite. FEBS Lett 445:226–230

    Article  CAS  PubMed  Google Scholar 

  19. Kieliszek M, Lipinski B (2018) Pathophysiological significance of protein hydrophobic interactions: an emerging hypothesis. Med Hypotheses 110:15–22

    Article  CAS  PubMed  Google Scholar 

  20. Kieliszek M, Blazejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21:609

    Article  PubMed Central  CAS  Google Scholar 

  21. Tobe R, Mihara H (2018) Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 1862:2433–2440

    Article  CAS  PubMed  Google Scholar 

  22. Cai Z, Zhang J, Li H (2019) Selenium, aging and aging-related diseases. Aging Clin Exp Res 31:1035–1047

    Article  PubMed  Google Scholar 

  23. Kato T, Read R, Rozga J, Burk RF (1992) Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am J Physiol 262:G854–G858

    CAS  PubMed  Google Scholar 

  24. Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moreno RR, Mathieu F, Boelaert M, Begaux F, Suetens C, Rivera MT et al (2003) Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am J Clin Nutr 78:137–144

    Article  Google Scholar 

  26. Ashrafi MR, Shabanian R, Abbaskhanian A, Nasirian A, Ghofrani M, Mohammadi M et al (2007) Selenium and intractable epilepsy: is there any correlation? Pediatr Neurol 36:25–29

    Article  PubMed  Google Scholar 

  27. Zorzato F, Jungbluth H, Zhou H, Muntoni F, Treves S (2007) Functional effects of mutations identified in patients with multiminicore disease. IUBMB Life 59:14–20

    Article  CAS  PubMed  Google Scholar 

  28. Dumitrescu AM, Liao XH, Abdullah MS, Lado AJ, Majed FA, Moeller LC et al (2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37:1247–1252

    Article  CAS  PubMed  Google Scholar 

  29. Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hatfield DL, Yoo MH, Carlson BA, Gladyshev VN (2009) Selenoproteins that function in cancer prevention and promotion. Biochim Biophys Acta 1790:1541–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brigelius FR (2008) Selenium compounds and selenoproteins in cancer. Chem Biodivers 5:389–395

    Article  Google Scholar 

  32. Squires J, Berry MJ (2006) Selenium, selenoproteins, and cancer. Hawaii Med J 65:239–240

    PubMed  Google Scholar 

  33. Marta GF, Maria GP, Tamara GB, Sara RA, Jose L, Gomez AB et al (2021) Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: the hortega study-sciencedirect. Free Radic Biol Med 162:392–400

    Article  CAS  Google Scholar 

  34. Önal S, Nazıroğlu M, Çolak M, Bulut V, Flores-Arce MF (2011) Effects of different medical treatments on serum copper, selenium and zinc levels in patients with rheumatoid arthritis. Biol Trace Elem Res 142:447–455

    Article  PubMed  CAS  Google Scholar 

  35. Kurz B, Jost B, Schünke M (2002) Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthritis Cartilage 10:119–126

    Article  CAS  PubMed  Google Scholar 

  36. Hui W, Young DA, Rowan AD, Xu X, Cawston TE, Proctor CJ (2016) Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann Rheum Dis 75:449–458

    Article  CAS  PubMed  Google Scholar 

  37. Yudoh K, Nguyen VT, Nakamura H, Hongo MK, Kato T, Nishioka K (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 7:R380–R391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang DH, Lee J, Wu CY, Guo X, Lee BJ, Chun JS et al (2020) The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 52:1198–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo R, Liu G, Liu W, Pei F, Zhou Z, Li J et al (2011) Efficacy of celecoxib, meloxicam and paracetamol in elderly Kashin-Beck disease (KBD) patients. Int Orthop 35:1409–1414

    Article  PubMed  Google Scholar 

  40. Yamamuro T (2001) Kashin-Beck disease: a historical overview. Int Orthop 25:134–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang BJ, Yang LS, Wang WY, Li YH, Li HR (2011) Environmental selenium in the Kaschin-Beck disease area, Tibetan Plateau, China. Environ Geochem Health 33:495–501

    Article  CAS  PubMed  Google Scholar 

  42. Zhang BJ, Yang LS, Wang WY, Li YH, Li HR (2011) Selenium in Environment and its Relationship with Kaschin-Beck Disease in Rangtang County, Sichuan Province. Environ Geochem Health 33:495–501

    Article  CAS  PubMed  Google Scholar 

  43. Zhang ZC, Zhang JS, Xiao JR (2014) Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta 1840:3246–3256

    Article  CAS  PubMed  Google Scholar 

  44. Chen JH, Xue SH, Li SY, Wang ZL, Yang HJ, Wang W et al (2012) Oxidant damage in Kashin-Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions. J Orthop Res 30:1229–1237

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Wei S, Luo M, Yu B, Cao J, Yang Z et al (2013) Oxidative stress and status of antioxidant enzymes in children with Kashin-Beck disease. Osteoarthritis Cartilage 21:1781–1789

    Article  CAS  PubMed  Google Scholar 

  46. Shenkin A (2009) Selenium in intravenous nutrition. Gastroenterology 137:S61–S69

    Article  CAS  PubMed  Google Scholar 

  47. Wang WZ, Guo X, Duan C, Ma WJ, Zhang YG, Xu P et al (2009) Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis. Osteoarthritis Cartilage 17:83–90

    Article  CAS  PubMed  Google Scholar 

  48. West KA, Castillo SS, Dennis PA (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5:234–248

    Article  CAS  PubMed  Google Scholar 

  49. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998

    Article  CAS  PubMed  Google Scholar 

  50. Du XA, Wang HM, Dai XX, Kou Y, Wu RP, Chen Q et al (2015) Role of selenoprotein S (SEPS1) −105G>A polymorphisms and PI3K/Akt signaling pathway in Kashin-Beck disease. Osteoarthritis Cartilage 23:210–216

    Article  CAS  PubMed  Google Scholar 

  51. Yang HJ, Zhang Y, Wang ZL, Xue SH, Li SY, Zhou XR et al (2017) Increased chondrocyte apoptosis in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Biomed Environ Sci 30:351–362

    CAS  PubMed  Google Scholar 

  52. Dai XX, Li YY, Zhang RQ, Kou Y, Mo XY, Cao JL et al (2016) Effects of sodium selenite on c-Jun N-terminal kinase signalling pathway induced by oxidative stress in human chondrocytes and c-Jun N-terminal kinase expression in patients with Kashin-Beck disease, an endemic osteoarthritis. Br J Nutr 115:1547–1555

    Article  CAS  PubMed  Google Scholar 

  53. Han J, Guo X, Tan WH, Zhang F, Liu JT, Wang WZ et al (2013) The expression of p-ATF2 involved in the chondeocytes apoptosis of an endemic osteoarthritis, Kashin-Beck disease. BMC Musculoskelet Disord 14:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang M, Wang MY, Wang H, Zhang Y, Li ZZ, Feng YP et al (2021) Decreased expression of heat shock protein 47 is associated with T-2 toxin and low selenium-induced matrix degradation in cartilages of Kashin-Beck disease. Biol Trace Elem Res 199:944–954

    Article  CAS  PubMed  Google Scholar 

  55. Zhou XR, Wang ZH, Chen JH, Wang W, Song DQ, Li SY et al (2014) Increased levels of IL-6, IL-1β, and TNF-α in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int 37:995–1004

    Article  CAS  Google Scholar 

  56. Shi M, He Y, Zhang Y, Guo XB, Lin J, Wang W et al (2021) LncRNA MIAT regulated by selenium and T-2 toxin increases NF-κB-p65 activation, promoting the progress of Kashin-Beck Disease. Hum Exp Toxicol 40:869–881

    Article  CAS  PubMed  Google Scholar 

  57. Chang YH, Wang X, Sun ZM, Jin ZK, Chen M, Wang XQ et al (2017) Inflammatory cytokine of IL-1β is involved in T-2 toxin-triggered chondrocyte injury and metabolism imbalance by the activation of Wnt/β-catenin signaling. Mol Immunol 91:195–201

    Article  CAS  PubMed  Google Scholar 

  58. Zhang M, Wang WJ, Wang H, Liu YN, Li ZZ, Yi CF et al (2021) Downregulation of insulin-like growth factor-1 receptor mediates chondrocyte death and matrix degradation in Kashin-Beck disease. Cartilage. https://doi.org/10.1177/19476035211021890.

  59. Wang XQ, Jin ZK, Chen M, Duan DP, Lammi MJ, Guo X et al (2020) Inhibiting the aberrant activation of Wnt/β-catenin signaling by selenium supplementation ameliorates deoxynivalenol-induced toxicity and catabolism in chondrocytes. J Cell Physiol 235:4434–4442

    Article  CAS  PubMed  Google Scholar 

  60. Ma B, Landman EB, Miclea RL, Wit JM, Robanus-Maandag EC, Post JN et al (2013) WNT signaling and cartilage: of mice and men. Calcif Tissue Int 92:399–411

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Ning YJ, Zhang P, Yang L, Wang YT, Guo X (2017) Chondrocytes damage induced by T-2 toxin via Wnt/β-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease. Exp Cell Res 361:141–148

    Article  CAS  PubMed  Google Scholar 

  62. Smolen JS, Aletaha D, Barton A (2018) Rheumatoid arthritis Nat Rev Dis Primers 4:18002

    Article  Google Scholar 

  63. Ren SX, Zhao XX, Lin Y, Ma DS, Zhou L, Chen T et al (2020) Therapeutic effect and anti-inflammatory mechanism of selenium nanoparticles on rheumatoid arthritis in model rats. Chin J Practic Diag Treat 34:13–16 ((In Chinese))

    Google Scholar 

  64. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  PubMed  Google Scholar 

  65. Saad MB, Gertner LR, Bona TD, Santin E (2009) Selenium influence in the poultry immune response-review. Recent Pat Food Nutr Agric 1:243–247

    Article  CAS  PubMed  Google Scholar 

  66. Tarp U, Pedersen KS, Hansen JC, Thorling EB (1992) Glutathione redox cycle enzymes and selenium in severe rheumatoid arthritis: lack of antioxidative response to selenium supplementation in polymorphonuclear leucocytes. Ann Rheum Dis 51:1044–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mertens K, Lowes DA, Webster NR, Talib J, Hall L, Davies MJ et al (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth 114:990–999

    Article  CAS  PubMed  Google Scholar 

  68. Ren SX, Bo Z, Yuan L, Ma DS, Hui Y (2019) Selenium nanoparticles dispersed in phytochemical exert anti-inflammatory activity by modulating catalase, GPx1, and COX-2 gene expression in a rheumatoid arthritis rat model. Med Sci Monit 25:991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sinha BK, Mimnaugh EG, Rajagopalan S, Myers CE (1989) Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance. Cancer Res 49:3844–3848

    CAS  PubMed  Google Scholar 

  70. Suryo RA, Pattison DI, Davies MJ (2012) Photo-oxidation-induced inactivation of the selenium-containing protective enzymes thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 53:1308–1316

    Article  CAS  Google Scholar 

  71. Vieira AT, Silveira KD, Arruda MC, Fagundes CT, Gonçalves JL, Silva TA et al (2012) Treatment with Selemax, a selenium-enriched yeast, ameliorates experimental arthritis in rats and mice. Br J Nutr 108:1829–1838

    Article  CAS  PubMed  Google Scholar 

  72. Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P et al (2007) Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 9:1541–1567

    Article  CAS  PubMed  Google Scholar 

  73. Umar S, Asif M, Sajad M, Ansari M, Hussain U, Ahmad W et al (2012) Anti-inflammatory and antioxidant activity of Trachyspermum ammi seeds in collagen induced arthritis in rats. Int J Drug Dev & Res 4:94–96

    Google Scholar 

  74. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166

    Article  PubMed  Google Scholar 

  75. Szekanecz Z, Koch AE (2009) Angiogenesis and its targeting in rheumatoid arthritis. Vascul Pharmacol 51:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Szekanecz Z, Besenyei T, Szentpetery A, Koch AE (2010) Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol 22:299–306

    Article  CAS  PubMed  Google Scholar 

  77. Cho JY, Moon JH, Seong KY, Park KH (1998) Antimicrobial activity of 4-hydroxybenzoic acid and trans-4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62:2273–2276

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Ma L, Zhou H, Zhu XF, Yu QQ, Chen X et al (2018) Polypeptide nano-Se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPKα signaling pathway. J Mater Chem B 6:3497–3514

    Article  CAS  PubMed  Google Scholar 

  79. Yu N, Han F, Lin XJ, Tang C, Ye JH, Cai XY (2016) The association between serum selenium levels with rheumatoid arthritis. Biol Trace Elem Res 172:46–52

    Article  CAS  PubMed  Google Scholar 

  80. Köse K, Doğan P, Kardas Y, Saraymen R (1996) Plasma selenium levels in rheumatoid arthritis. Biol Trace Elem Res 53:51–56

    Article  PubMed  Google Scholar 

  81. Ma YB, Zhang X, Fan DZ, Xia Q, Wang MM, Pan FM (2019) Common trace metals in rheumatoid arthritis: a systematic review and meta-analysis. J Trace Elem Med Biol 56:81–89

    Article  CAS  PubMed  Google Scholar 

  82. Zhang JH, Qiu XY, Zhang H (2002) Selenate lipolysaccharide combined to treat the ache of rheumatoid arthritis. Chin J Clin Rehabil 12:1806 ((In Chinese))

    Google Scholar 

  83. Moustafa SR, Taweel NA, Mohsen F (2015) Association of boron, copper, germanium, magnesium, selenium and zinc with incidence of rheumatoid arthritis. Amer J Intern Med 3:132–140

    Google Scholar 

  84. Pereira D, Ramos E, Branco J (2015) Osteoarthritis. Acta Med Port 28:99–106

    Article  PubMed  Google Scholar 

  85. Mobasheri A, Batt M (2016) An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil Med 59:333–339

    Article  PubMed  Google Scholar 

  86. Naza MA, Mahmood (2015) Relationship between serum levels of some trace elements, disease duration and severity in patients with knee osteoarthritis. Pharmacol Pharm 6: 489–495.

  87. Cheng AW, Stabler TV, Bolognesi M, Kraus VB (2011) Selenomethionine inhibits IL-1β inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) expression in primary human chondrocytes. Osteoarthritis Cartilage 19:118–125

    Article  CAS  PubMed  Google Scholar 

  88. Zheng JP, Zhu SF, Dou Y (2000) The Effect of Kangqiang selenium and selenium polysaccharide on cell cycle of livers of rats poisoned with arsenic. China Public Health 11:35–37 ((In Chinese))

    Google Scholar 

  89. Chen JH, Chu YL, Cao JL, Yang ZT, Guo X, Wang ZL (2006) T-2 toxin induces apoptosis, and selenium partly blocks, T-2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl-2 ratio. Food Chem Toxicol 44:567–573

    Article  CAS  PubMed  Google Scholar 

  90. NIH Consensus Development Panel on Osteoporosis Prevention, diagnosis, and Therapy (2001) Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 285: 785–795.

  91. Arikan D, Coskun A, Ozer A, Kilinc M, Atalay F, Arikan T (2011) plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol Trace Elem Res 144:407–417

    Article  CAS  PubMed  Google Scholar 

  92. Odabasi E, Turan M, Aydin A, Akay C, Kutlu M (2008) Magnesium, zinc, copper, manganese, and selenium levels in postmenopausal women with osteoporosis. Can Magnesium Play a Key Role in Osteoporosis? Ann Acad Med Singap 37:564–567

    Article  PubMed  Google Scholar 

  93. Moreno RR, Egrise D, Nève J, Pasteels JL, Schoutens A (2001) Selenium deficiencyinduced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16:1556–1563

    Article  Google Scholar 

  94. Park K, Kwon Y, Lee Y, Kim DK, Jang Y, Lee S (2020) Low selenium levels are associated with decreased bone mineral densities. J Trace Elem Med Biol 61:126534

    Article  CAS  PubMed  Google Scholar 

  95. Zeng H, Cao JJ, Combs GF (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tait SJ, Bao YP, Broadley MR, Collings R, Ford D, Hesketh JE et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  Google Scholar 

  97. Zofkova I, Davis M, Blahos J (2017) Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 66:391–402

    Article  CAS  PubMed  Google Scholar 

  98. Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY et al (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50:1314–1323

    Article  CAS  PubMed  Google Scholar 

  99. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL (2009) Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptorgamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 284:27438–27448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  101. Liu HM, Bian WX, Liu SX, Huang KX (2012) Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol Trace Elem Res 150:441–450

    Article  PubMed  CAS  Google Scholar 

  102. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  CAS  PubMed  Google Scholar 

  104. Zoidis E, Seremelis I, Kontopoulos N, Danezis GP (2018) Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel) 7:66

    Article  CAS  Google Scholar 

  105. Howell A (2003) Effect of anastrozole on bone mineral density: 2-year results of the arimidex’(anastrozole), tamoxifen, alone or in combination (ATAC) trial. Breast Cancer Res Treat 82:S27

    Google Scholar 

  106. Perez EA, Josse RG, Pritchard KI, Ingle JN, Martino S, Findlay BP et al (2004) Effect of letrozole versus placebo on bone mineral density in women completing 5 years (yrs) of adjuvant tamoxifen: NCIC CTG MA. 17b. Breast Cancer Res Treat 88: S36.

  107. Wu CC, Wang CK, Yang AM, Lu CS, Lin CY (2021) Selenium status is independently related to bone mineral density, FRAX score, and bone fracture history: NHANES, 2013 to 2014. Bone 143: 115631. Ahead of print.

  108. Vekariya KK, Kaur J, Tikoo K (2013) Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats. Toxicol Appl Pharmacol 268:212–220

    Article  CAS  PubMed  Google Scholar 

  109. Zhu L (2012) The role of the microelements in prevention and treatment of osteoporosis. Shanghai pharma 33:43–46 ((In Chinese))

    Google Scholar 

  110. Ji AQ, Zhai Y, Deng GY, Sha YF, Zhao JP, Zhang F et al (2018) Experimental study of prophylactic use of porous nano selenium material Se@SiO2 to alleviate steroid-induced avascular necrosis of femoral head. Orthopaedic J Chin 26:1408–1412 ((In Chinese))

    CAS  Google Scholar 

  111. Wang L, Liu YS, Liu SB (2015) Research progress on the pathogenesis of glucocorticoid induced femoral head necrosis. Chin J Injury Repair and Wound Healing (Electronic Edition) 10:439–445 ((In Chinese))

    Google Scholar 

  112. Li TL, Tao ZS, Wu XJ, Yang M, Xu HG (2021) Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab. https://doi.org/10.1007/s00774-021-01240-3. Ahead of print.

  113. Yan JD, Guo YX, Fei Y, Zhang R, Han Y, Lu SM (2017) GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress. Acta Biochim Biophys Sin (Shanghai) 49:110–118

    Article  CAS  Google Scholar 

  114. Chi Q, Luan Y, Zhang Y, Hu X, Li S (2019) The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM. Metallomics 11:845–857

    Article  CAS  PubMed  Google Scholar 

  115. Häfelein K, Preuße-Prange A, Behrendt P, Kurz B (2017) selenium reduces early signs of tumor necrosis factor alpha-induced meniscal tissue degradation. Biol Trace Elem Res 177:80–89

    Article  PubMed  CAS  Google Scholar 

  116. Neog MN, Pragasam S, Krishnan M, Rasool M (2017) P-Coumaric acid, a dietary polyphenol ameliorates inflammation and curtails cartilage and bone erosion in the rheumatoid arthritis rat model. BioFactors 43:698–717

    Article  CAS  PubMed  Google Scholar 

  117. Sun J, Min ZX, Zhao WX, Hussain S, Zhao YT, Guo DX et al (2021) T-2 toxin induces epiphyseal plate lesions via decreased SECISBP2-mediated selenoprotein expression in DA rats, exacerbated by selenium deficiency. Cartilage 12:121–131

    Article  CAS  PubMed  Google Scholar 

  118. Guo X, Ma WJ, Zhang F, Ren FL, Qu CJ, Lammi MJ (2014) Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. Osteoarthritis Cartilage 22:1774–1783

    Article  CAS  PubMed  Google Scholar 

  119. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  120. Shi Y, Lu F, Liu X, Wang Y, Huang LL, Liu XQ et al (2011) Genetic variants in the HLA-DRB1 gene are associated with Kashin-Beck disease in the Tibetan population. Arthritis Rheum 63:3408–3416

    Article  CAS  PubMed  Google Scholar 

  121. Wang LY, Yin JF, Yang B, Qu CJ, Lei J, Han J et al (2020) Serious selenium deficiency in the serum of patients with Kashin-Beck disease and the effect of nano-selenium on their chondrocytes. Biol Trace Elem Res 194:96–104

    Article  CAS  PubMed  Google Scholar 

  122. Li SJ, Yang LS, Wang WY, Li YH, Li HR, Xirao RD (2007) Relationship between selenium concentration in child hair and the distribution of Kashin-Beck disease in Tibet, China. Front Med China 1:223–225

    Article  PubMed  Google Scholar 

  123. Yazar M, Sarban S, Kocyigit A, Isikan UE (2005) Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res 106:123–132

    Article  CAS  PubMed  Google Scholar 

  124. Maehira F, Luyo GA, Miyagi I, Oshiro M, Yamane N, Kuba M et al (2002) Alterations of serum selenium concentrations in the acute phase of pathological conditions. Clin Chim Acta 316:137–146

    Article  CAS  PubMed  Google Scholar 

  125. Li L, Wu H, Wu LS (2021) Study on the relationship between selenium and osteoporosis and osteoarthritis. J Practic Orthopaed 27:708–712

    Google Scholar 

  126. Yao YF, Pei FX, Li XB, Yang J, Shen B, Zhou ZK et al (2012) Preventive effects of supplemental selenium and selenium plus iodine on bone and cartilage development in rats fed with diet from Kaschin-Beck disease endemic area. Bio Trace Elem Res 146:199–206

    Article  CAS  Google Scholar 

  127. Yu FY, Han J, Wang X, Fang H, Liu H, Guo X (2016) Salt-rich selenium for prevention and control children with Kashin-Beck disease: a meta-analysis of community-based trial. Biol Trace Elem Res 170:25–32

    Article  PubMed  CAS  Google Scholar 

  128. Li Q, Zhao ZJ, Yang PZ, Xu XQ, Liu YF, Yu HZ et al (2016) The prevention effect of selenium on prevalence of children Kaschin-Beck disease in active endemic areas in Qinghai Plateau. Biol Trace Elem Res 169:17–21

    Article  CAS  PubMed  Google Scholar 

  129. Xie DM, Liao YL, Yue JR, Zhang C, Wang YY, Deng CY et al (2018) Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open 8:e017883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81872567).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in drafting the article and critically modifying the important content of knowledge, with all authors endorsing the final version. Study conception and design: Han, Deng. Literature and data collection: Deng, Liu, Yang, Bao, Lin. Drafting the article or revising it critically for important intellectual content: Han, Deng, Bao, Lin, Liu, Yang, Qu. Final approval of the version of the article to be published: Han, Deng, Liu, Yang, Bao, Lin, Qu.

Corresponding author

Correspondence to Jing Han.

Ethics declarations

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Liu, H., Yang, Z. et al. Progress of Selenium Deficiency in the Pathogenesis of Arthropathies and Selenium Supplement for Their Treatment. Biol Trace Elem Res 200, 4238–4249 (2022). https://doi.org/10.1007/s12011-021-03022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03022-4

Keywords

Navigation