Skip to main content
Log in

CRISPR-Cas13a-Triggered DNAzyme Signal Amplification-Based Colorimetric miRNA Detection Method and Its Application in Evaluating the Anxiety

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The development of a bio-sensing strategy based on CRISPR/Cas that is exceptionally sensitive is crucial for the identification of trace molecules. Colorimetric miRNA detection utilizing CRISPR/Cas13a-triggered DNAzyme signal amplification was described in this article. The developed strategy was implemented for miRNA-21 detection as a proof of concept. The cleavage activity of Cas13a was triggered when the target molecule bonded to the Cas13a-crRNA complex and cleaved uracil ribonucleotides (rU) in the substrate probe. As a consequence, the S chain was liberated from the T chain that had been modified on magnetic beads (MB). The G-rich sections were then exposed when the catalytic hairpin assembly between the H1 and H2 probes was activated by the released T@MB. G-rich section can fold into G-quadruplex. By catalyzing the formation of green ABTS3– via HRP-mimicking G-quadruplex/hemin complexes, colorimetric measurements of miRNA can be achieved visually through DNAzyme-mediated signal amplification. The method demonstrated a low limit of detection of 27 fM and a high selectivity towards target miRNA eventually. As a result, the developed strategy provides a clinical application platform for the detection of miRNAs that is both ultrasensitive and extremely specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Nikanjam, M., Kato, S., & Kurzrock, R. (2022). Liquid biopsy: Current technology and clinical applications. Journal of Hematology & Oncology, 15(1), 131.

    Article  CAS  Google Scholar 

  2. Zhang, Z., Wu, H., Chong, W., Shang, L., Jing, C., & Li, L. (2022). Liquid biopsy in gastric cancer: Predictive and prognostic biomarkers. Cell Death & Disease, 13(10), 903.

    Article  CAS  Google Scholar 

  3. Lin, B., Jiang, J., Jia, J., & Zhou, X. (2022). Recent advances in exosomal miRNA biosensing for liquid biopsy. Molecules, 27(21), 7145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Markou, A., Tzanikou, E., & Lianidou, E. (2022). The potential of liquid biopsy in the management of cancer patients. Seminars in Cancer Biology, 84, 69–79.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishra, S., Yadav, T., & Rani, V. (2016). Exploring miRNA based approaches in cancer diagnostics and therapeutics. Critical Reviews in Oncology Hematology, 98, 12–23.

    Article  PubMed  Google Scholar 

  7. Fan, C., Li, Y., Lan, T., Wang, W., Long, Y., & Yu, S. Y. (2022). Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Molecular Therapy, 30(3), 1300–1314.

    Article  CAS  PubMed  Google Scholar 

  8. Song, M. (2020). miRNAs-dependent regulation of synapse formation and function. Genes Genomics, 42(8), 837–845.

    Article  CAS  PubMed  Google Scholar 

  9. Rahmani, S., Kadkhoda, S., & Ghafouri-Fard, S. (2022). Synaptic plasticity and depression: The role of miRNAs dysregulation. Molecular Biology Reports, 49(10), 9759–9765.

    Article  CAS  PubMed  Google Scholar 

  10. Narayanan, R., & Schratt, G. (2020). miRNA regulation of social and anxiety-related behaviour. Cellular and Molecular Life Sciences, 77(21), 4347–4364.

    Article  CAS  PubMed  Google Scholar 

  11. Torres, A. G., Fabani, M. M., Vigorito, E., & Gait, M. J. (2011). MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection. RNA, 17(5), 933–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, K. J., Kwak, J., Lee, J. H., & Lee, S. S. (2017). Real-time qRT-PCR assay for the detection of miRNAs using bi-directional extension sequences. Analytical Biochemistry, 536, 32–35.

    Article  CAS  PubMed  Google Scholar 

  13. Li, W., & Ruan, K. (2009). MicroRNA detection by microarray. Analytical and Bioanalytical Chemistry, 394(4), 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  14. Ren, A., Dong, Y., Tsoi, H., & Yu, J. (2015). Detection of miRNA as non-invasive biomarkers of colorectal cancer. International Journal of Molecular Sciences, 16(2), 2810–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, Y., Dong, L., Zhang, J., Zhao, Y., & Li, Z. (2018). Recent advances in microRNA detection. The Analyst, 143(8), 1758–1774.

    Article  CAS  PubMed  Google Scholar 

  16. Granados-Riveron, J. T., & Aquino-Jarquin, G. (2021). CRISPR/Cas13-Based approaches for ultrasensitive and specific detection of microRNAs. Cells, 10(7), 1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. H., He, L. L., Huang, K. J., Chen, Y. X., Wang, S. Y., Liu, Z. H., & Li, D. (2019). Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. The Analyst, 144(9), 2849–2866.

    Article  CAS  PubMed  Google Scholar 

  18. Hosseinzadeh, E., Ravan, H., Mohammadi, A., & Pourghadamyari, H. (2020). Colorimetric detection of miRNA-21 by DNAzyme-coupled branched DNA constructs. Talanta, 216, 120913.

    Article  CAS  PubMed  Google Scholar 

  19. Nie, N., Tang, W., Ding, X., Guo, X., & Chen, Y. (2022). DNAzyme based dual signal amplification strategy for ultrasensitive myocardial ischemia related MiRNA detection. Analytical Biochemistry, 640, 114543.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., Feng, H., Huang, K., Quan, J., Yu, F., Liu, X., Jiang, H., & Wang, X. (2022). Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection. Biosensors & Bioelectronics, 215, 114572.

    Article  CAS  Google Scholar 

  21. Yuan, J. H., Shao, W., Chen, S. B., Huang, Z. S., & Tan, J. H. (2020). Recent advances in fluorescent probes for G-quadruplex nucleic acids. Biochemical and Biophysical Research Communications, 531(1), 18–24.

    Article  CAS  PubMed  Google Scholar 

  22. Xie, Y., Zhang, S., Deng, T., Zhang, K., Ren, J., & Li, J. (2021). A Novel DNAzyme signal amplification-based colorimetric method for RNase H assays. Analytical Sciences, 37(12), 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  23. Shahsavar, K., Shokri, E., & Hosseini, M. (2022). Sensitive colorimetric detection of miRNA-155 via G-quadruplex DNAzyme decorated spherical nucleic acid. Mikrochimica Acta, 189(9), 357.

    Article  CAS  PubMed  Google Scholar 

  24. Asa, T. A., Ravi Kumara, G. S., & Seo, Y. J. (2022). Highly sensitive, selective, and rapid detection of miRNA-21 using an RCA/G-quadruplex/QnDESA probing system. Analytical Methods, 14(2), 97–100.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Q., Zhang, X., Zou, X., Ma, F., & Zhang, C. Y. (2023). CRISPR/Cas-based MicroRNA Biosensors. Chemistry (Easton), 29(16), e202203412.

    CAS  Google Scholar 

  26. Zhao, D., Tang, J., Tan, Q., Xie, X., Zhao, X., & Xing, D. (2023). CRISPR/Cas13a-triggered Cas12a biosensing method for ultrasensitive and specific miRNA detection. Talanta, 260, 124582.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was financially supported by the Hengshui City Science and Technology Plan Project (project number: 2023014010Z).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. is the supervisor of the team in all research steps including designing, data analysis, and manuscript writing. N.Y. has the main role for experimental data collection, data gathering, preparation of results, and data analysis. Z.H. and L.Z. assisted in the data analysis.

Corresponding author

Correspondence to Na Yan.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Hu, Z. & Zhang, L. CRISPR-Cas13a-Triggered DNAzyme Signal Amplification-Based Colorimetric miRNA Detection Method and Its Application in Evaluating the Anxiety. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04951-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04951-1

Keywords

Navigation