Skip to main content
Log in

Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The common drawbacks of the current colorimetric sensing platform using gold nanoparticles (AuNP) as an indictor is its relatively low sensitivity, which restrict their analytical application for low-level analytes, such as the detection of the microRNA (miRNA). In the present work, we developed a novel strategy to construct a colorimetric sensing platform for miRNA based on target catalyzed hairpin DNA assembling. Unlike a single-stranded DNA probe or a single-arm hairpin structure DNA probe, in our strategy the double-arm hairpin structure DNA probe was first designed, and was further demonstrated to work well in catalysis the of hairpin DNA assembly reaction, which significantly enhanced the sensitivity of the AuNP based colorimetric sensing platform. In addition, compared to other miRNA detection schemes reported previously, the proposed strategy is not only enzyme-free, label-free, immobilization-free, but also eliminates the need for any sophisticated instrumentation. The proposed strategy may open a new way to allow miRNAs expression to be profiled in a decentralized setting, such as at point-of-care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Aguda, Y. Kima, M. G. Piper-Hunter, A. Friedmana, and C. B. Marsh, Proc. Natl. Acad. Sci. U. S. A., 2008, 705, 19678.

    Article  Google Scholar 

  2. J. R. Buchan and R. Parker, Science, 2007, 318, 1877.

    Article  CAS  PubMed  Google Scholar 

  3. G. A. Calin and C. M. Croce, Nat. Rev. Cancer, 2006, 6, 857.

    Article  CAS  PubMed  Google Scholar 

  4. C. S. Sullivan and D. Ganem, Mol. Cell, 2005, 20, 3.

    Article  CAS  PubMed  Google Scholar 

  5. C. M. Croce and G. A. Calin, Cell, 2005, 122, 6.

    Article  CAS  PubMed  Google Scholar 

  6. C. Chen, D. A. Ridzon, A. J. Broomer, Z. Zhou, D. H. Lee, J. T. Nguyen, M. Barbisin, N. L. Xu, V. R. Mahuvakar, M. R. Andersen, K. Q. Lao, K. J. Livak, and K. J. Guegler, Nucl. Acids Res., 2005, 33, e179.

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. K. Raymond, B. S. Roberts, P. Garrett-Engele, L. P. Lim, and J. M. Johnson, RNA, 2005, 11, 1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. L. Yan, Z. P. Li, C. H. Liu, and Y. Q. Cheng, Chem. Commun., 2010, 46, 2432.

    Article  CAS  Google Scholar 

  9. Z. Yuan, Y. Zhou, S. Gao, Y. Cheng, and Z. Li, ACS Appl. Mater. Interfaces, 2014, 6, 6181.

    Article  CAS  PubMed  Google Scholar 

  10. J. S. Hartig, I. Grüne, S. H. Najafi-Shoushtari, and M. Famulok, J. Am. Chem. Soc., 2004, 126, 722.

    Article  CAS  PubMed  Google Scholar 

  11. D. M. Zhou, W.-F. Du, Q. Xi, J. Ge, and J.-H. Jiang, Anal. Chem., 2014, 86, 6763.

    Article  CAS  PubMed  Google Scholar 

  12. C. Li, Z. Li, H. Jia, and J. Yan, Chem. Commun., 2011, 47, 2595.

    Article  CAS  Google Scholar 

  13. Y. Yu, Z. Chen, L. Shi, F. Yang, J. Pan, B. Zhang, and D. Sun, Anal. Chem., 2014, 86, 8200.

    Article  CAS  PubMed  Google Scholar 

  14. G. Wang and C. Zhang, Anal. Chem., 2012, 84, 7037.

    Article  CAS  PubMed  Google Scholar 

  15. H. Liu, L. Li, L. Duan, X. Wang, Y. Xie, L. Tong, Q. Wang, and B. Tang, Anal. Chem., 2013, 85, 7941.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Wen, Y. Xu, X. Mao, Y. Wei, H. Song, N. Chen, Q. Huang, C. Fan, and D. Li, Anal. Chem., 2012, 84, 7664.

    Article  CAS  PubMed  Google Scholar 

  17. N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547.

    Article  CAS  PubMed  Google Scholar 

  18. M. C. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293.

    Article  CAS  PubMed  Google Scholar 

  19. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Chem. Rev., 2012, 112, 2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Li and L. Rothberg, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 14036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heegera, and K. W. Plaxco, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Xu, J. Zhang, F. Yang, and X. Yang, Chem. Commun., 2011, 47, 9435.

    Article  CAS  Google Scholar 

  23. E. Tan, J. Wong, D. Nguyen, Y. Zhang, B. Erwin, L. K. Van Ness, S. M. Baker, D. J. Galas, and A. Niemz, Anal. Chem., 2005, 77, 7984.

    Article  CAS  PubMed  Google Scholar 

  24. J. Zhao, T. Liu, Q. Fan, and G. Li, Chem. Commun., 2011, 47, 5262.

    Article  CAS  Google Scholar 

  25. J. Li, H. Fu, L. Wu, A. Zheng, G. Chen, and H. Yang, Anal. Chem., 2012, 84, 5309.

    Article  CAS  PubMed  Google Scholar 

  26. L. Ou, P. Jin, X. Chu, J. Jiang, and R. Yu, Anal. Chem., 2010, 82, 6015.

    Article  CAS  PubMed  Google Scholar 

  27. C. Yan, C. Jiang, J. Jiang, and R. Yu, Anal. Sci., 2013, 29, 605.

    Article  CAS  PubMed  Google Scholar 

  28. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc., 1998, 120, 1959.

    Article  CAS  Google Scholar 

  29. D. Y. Zhang and E. Winfree, J. Am. Chem. Soc., 2009, 131, 17303.

    Article  CAS  PubMed  Google Scholar 

  30. A. J. Genot, D. Y. Zhang, J. Bath, and A. J. Turberfield, J. Am. Chem. Soc., 2011, 133, 2077.

    Google Scholar 

  31. H. Li and L. Rothberg, J. Am. Chem. Soc., 2004, 126, 10958.

    Article  CAS  PubMed  Google Scholar 

  32. R. Kanjanawarut and X. Su, Anal. Chem., 2009, 81, 6122.

    Article  CAS  PubMed  Google Scholar 

  33. P. Liu, X. Yang, S. Sun, Q. Wang, K. Wang, J. Huang, J. Liu, and L. He, Anal. Chem., 2013, 85, 7689.

    Article  CAS  PubMed  Google Scholar 

  34. P. Zhang, J. Zhang, C. Wang, C. Liu, H. Wang, and Z. Li, Anal. Chem., 2014, 86, 1076.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Foundation of China (Grant 21375085), and the Fundamental Research Funds for the Central Universities (Grant 201302018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, R., Zheng, X. Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling. ANAL. SCI. 32, 751–755 (2016). https://doi.org/10.2116/analsci.32.751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.751

Keywords

Navigation