Skip to main content
Log in

miRNAs-dependent regulation of synapse formation and function

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

A synapse is a fundamental signaling component that facilitates neuronal connectivity and information processing in the brain. Dynamic changes in the number, size, and functionality of synapse are induced by extensive signaling networks and structural proteins, which are stimulated on various neuronal activities. Changes in the expression level of synaptic proteins depend upon the physiological and pathological conditions at transcriptional, post-transcriptional, and post-translational levels. MicroRNAs (miRNAs) have not only emerged as pivotal gene expression regulators in neurons, but also in diverse cell types. miRNAs are evolutionarily conserved small non-coding RNAs that modulate mRNA stability and protein synthesis by interacting with 3′-untranslated region (3′-UTR) of mRNAs. Often, miRNA expression is limited to specific neuronal compartments such as axons, dendrites, and cell body to locally regulate protein synthesis in response to various stimuli.

Objective

Increasing evidences suggest that miRNAs are involved in the regulation of neuronal proliferation, differentiation, migration, development, and many other processes. This article reviews recent findings on the role of miRNAs in synapse formation and function.

Conclusions

Many studies have elucidated the role of miRNAs in diverse neuronal physiological and pathological processes. A better understanding of the mechanisms involved in miRNA functioning at the synapse will be beneficial in formulating novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6:376–387

    CAS  PubMed  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Ari Y (2012) The Yin and Yen of GABA in brain development and operation in health and disease. Front Cell Neurosci 6:45

    PubMed  PubMed Central  Google Scholar 

  • Biever A, Donlin-Asp PG, Schuman EM (2019) Local translation in neuronal processes. Curr Opin Neurobiol 57:141–148

    CAS  PubMed  Google Scholar 

  • Bischoff A, Bayerlova M, Strotbek M, Schmid S, Beissbarth T, Olayioye MA (2015) A global microRNA screen identifies regulators of the ErbB receptor signaling network. Cell Commun Signal 13:5

    PubMed  PubMed Central  Google Scholar 

  • Boyer NP, Gupton SL (2018) Revisiting netrin-1: one who guides (axons). Front Cell Neurosci 12:221

    PubMed  PubMed Central  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Shen CK (2013) Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci 33:9013–9020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KHT, Xu B, Blenkiron C, Fraser M (2019) Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol 10:227

    PubMed  PubMed Central  Google Scholar 

  • Dalla Venezia N, Vincent A, Marcel V, Catez F, Diaz JJ (2019) Emerging role of eukaryote ribosomes in translational control. Int J Mol Sci 20(5):E1226. https://doi.org/10.3390/ijms20051226

    Article  CAS  PubMed  Google Scholar 

  • de Sena Cortabitarte A, Berkel S, Cristian FB, Fischer C, Rappold GA (2018) A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders. J Neurodev Disord 10:15

    PubMed  PubMed Central  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore R, Schratt G (2007) MicroRNAs in vertebrate synapse development. Sci World J 7:167–177

    Google Scholar 

  • Fiumara F, Rajasethupathy P, Antonov I, Kosmidis S, Sossin WS, Kandel ER (2015) MicroRNA-22 gates long-term heterosynaptic plasticity in Aplysia through presynaptic regulation of CPEB and downstream targets. Cell Rep 11:1866–1875

    CAS  PubMed  Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanapavan S, Ho P, Heywood W, Jackson S, Grant D, Rantell K, Keir G, Mills K, Steinman L, Giovannoni G (2013) Progression in multiple sclerosis is associated with low endogenous NCAM. J Neurochem 125:766–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman JS, Ashour MA, Magdesian MH, Tritsch NX, Harris SN, Christofi N, Chemali R, Stern YE, Thompson-Steckel G, Gris P et al (2013) Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J Neurosci 33:17278–17289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross C, Yao X, Engel T, Tiwari D, Xing L, Rowley S, Danielson SW, Thomas KT, Jimenez-Mateos EM, Schroeder LM et al (2016) MicroRNA-mediated downregulation of the potassium channel Kv4.2 contributes to seizure onset. Cell Rep 17:37–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu QH, Yu D, Hu Z, Liu X, Yang Y, Luo Y, Zhu J, Li Z (2015) miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun 6:6789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holtmaat A, Caroni P (2016) Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 19:1553–1562

    CAS  PubMed  Google Scholar 

  • Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Yu D, Gu QH, Yang Y, Tu K, Zhu J, Li Z (2014) miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 5:3263

    PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z (2015) miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J Cell Biol 208:949–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Ruiz CR, Eyler EC, Lin K, Meffert MK (2012) Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 148:933–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, Unsicker K, Iadecola C, Hempstead BL (2014) Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 34:3419–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45

    CAS  PubMed  Google Scholar 

  • Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665

    CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, Fernaud-Espinosa I, Rodriguez-Alvarez N, Reynolds J, Reschke CR, Conroy RM, McKiernan RC, deFelipe J et al (2015) Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct 220:2387–2399

    CAS  PubMed  Google Scholar 

  • Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35:368–376

    CAS  PubMed  Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    CAS  PubMed  Google Scholar 

  • Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM et al (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35:1712–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Noh H, Lee Y, Jeon J, Shanmugavadivu A, McPhie DL, Kim KS, Cohen BM, Seo H, Sonntag KC (2016) MiR-126 regulates growth factor activities and vulnerability to toxic insult in neurons. Mol Neurobiol 53:95–108

    CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    CAS  PubMed  Google Scholar 

  • Lee K, Kim JH, Kwon OB, An K, Ryu J, Cho K, Suh YH, Kim HS (2012a) An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J Neurosci 32:5678–5687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D et al (2012b) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269–277

    CAS  PubMed  Google Scholar 

  • Letellier M, Elramah S, Mondin M, Soula A, Penn A, Choquet D, Landry M, Thoumine O, Favereaux A (2014) miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci 17:1040–1042

    CAS  PubMed  Google Scholar 

  • Lippi G, Steinert JR, Marczylo EL, D’Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW (2011) Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J Cell Biol 194:889–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lippi G, Fernandes CC, Ewell LA, John D, Romoli B, Curia G, Taylor SR, Frady EP, Jensen AB, Liu JC et al (2016) MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron 92:1337–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M et al (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 112:E1106–E1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill EM, Warinner C, Alkins S, Taylor A, Heggeness H, DeLuca TF, Fulga TA, Wall DP, Griffith LC, Van Vactor D (2020) The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nat Commun 11:1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitre M, Mariga A, Chao MV (2017) Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci 131:13–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno K, Okano I, Ohashi K, Nunoue K, Kuma K, Miyata T, Nakamura T (1994) Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9:1605–1612

    CAS  PubMed  Google Scholar 

  • Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18:147–157

    CAS  PubMed  Google Scholar 

  • Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42:673–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olde Loohuis NF, Ba W, Stoerchel PH, Kos A, Jager A, Schratt G, Martens GJ, van Bokhoven H, Nadif Kasri N, Aschrafi A (2015) MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD. Cell Rep 11:1876–1884

    CAS  PubMed  Google Scholar 

  • Pandya NJ, Koopmans F, Slotman JA, Paliukhovich I, Houtsmuller AB, Smit AB, Li KW (2017) Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep 7:12107

    PubMed  PubMed Central  Google Scholar 

  • Raab-Graham KF, Haddick PC, Jan YN, Jan LY (2006) Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314:144–148

    CAS  PubMed  Google Scholar 

  • Rocchi A, Moretti D, Lignani G, Colombo E, Scholz-Starke J, Baldelli P, Tkatch T, Benfenati F (2019) Neurite-enriched microRNA-218 stimulates translation of the GluA2 subunit and increases excitatory synaptic strength. Mol Neurobiol 56:5701–5714

    CAS  PubMed  Google Scholar 

  • Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32:619–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    CAS  PubMed  Google Scholar 

  • Sengupta JN, Pochiraju S, Kannampalli P, Bruckert M, Addya S, Yadav P, Miranda A, Shaker R, Banerjee B (2013) MicroRNA-mediated GABA Aalpha-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain 154:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shboul ZA, Chen J, K MI (2020) Prediction of molecular mutations in diffuse low-grade gliomas using MR imaging features. Sci Rep 10:3711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W, Flood Z, Martorell AJ, Ericsson M, Mungenast AE et al (2015) The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 18:1008–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MM, Rodrigues B, Fernandes J, Santos SD, Carreto L, Santos MAS, Pinheiro P, Carvalho AL (2019) MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 116:5727–5736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Martinowich K, Lee FS (2017) BDNF at the synapse: why location matters. Mol Psychiatry 22:1370–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhof TC (2017) Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171:745–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KT, Gross C, Bassell GJ (2018) microRNAs sculpt neuronal communication in a tight balance that is lost in neurological disease. Front Mol Neurosci 11:455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa L, Diez-Guerra FJ, Avila J, Diaz-Nido J (1994) Localization of differentially phosphorylated isoforms of microtubule-associated protein 1B in cultured rat hippocampal neurons. Neuroscience 61:211–223

    CAS  PubMed  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102:16426–16431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen Q, Yi S, Liu Q, Zhang R, Wang P, Qian T, Li S (2019) The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration. J Biol Chem 294:3489–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ (2020) Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci 21:169–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willemsen MH, Valles A, Kirkels LA, Mastebroek M, Olde Loohuis N, Kos A, Wissink-Lindhout WM, de Brouwer AP, Nillesen WM, Pfundt R et al (2011) Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet 48:810–818

    CAS  PubMed  Google Scholar 

  • Yuan J, Huang H, Zhou X, Liu X, Ou S, Xu T, Li R, Ma L, Chen Y (2016) MicroRNA-132 interact with p250GAP/Cdc42 pathway in the hippocampal neuronal culture model of acquired epilepsy and associated with epileptogenesis process. Neural Plast 2016:5108489

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Fan Z, Qiao P, Zhao Y, Wang Y, Jiang D, Wang X, Zhu X, Zhang Y, Huang B et al (2018) miR-51 regulates GABAergic synapses by targeting Rab GEF GLO-4 and lysosomal trafficking-related GLO/AP-3 pathway in Caenorhabditis elegans. Dev Biol 436:66–74

    CAS  PubMed  Google Scholar 

  • Zhao Y, Jaber VR, LeBeauf A, Sharfman NM, Lukiw WJ (2019) microRNA-34a (miRNA-34a) mediated down-regulation of the post-synaptic cytoskeletal element SHANK3 in sporadic Alzheimer’s disease (AD). Front Neurol 10:28

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2018 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minseok Song.

Ethics declarations

Conflict of interest

Minseok Song declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M. miRNAs-dependent regulation of synapse formation and function. Genes Genom 42, 837–845 (2020). https://doi.org/10.1007/s13258-020-00940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00940-w

Keywords

Navigation