Skip to main content

Advertisement

Log in

Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data availability is not applicable to this review article as no new data were created or analyzed in this study.

References

  1. Schmid, A. K., Allers, T., & DiRuggiero, J. (2020). SnapShot: Microbial extremophiles. Cell, 180, 818-818.e811.

    Article  PubMed  CAS  Google Scholar 

  2. Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409, 1092–1101.

    Article  PubMed  CAS  Google Scholar 

  3. Shu, W. S., & Huang, L. N. (2022). Microbial diversity in extreme environments. Nature Reviews Microbiology, 20, 219–235.

    Article  PubMed  CAS  Google Scholar 

  4. Thakur, N., Singh, S. P., & Zhang, C. (2022). Microorganisms under extreme environments and their applications. Curr Res Microb Sci, 3, 100141.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Feller, G. (2013). Psychrophilic enzymes: From folding to function and biotechnology. Scientifica (Cairo), 2013, 512840.

    PubMed  Google Scholar 

  6. Morita, R. Y. (1975). Psychrophilic bacteria. Bacteriological Reviews, 39, 144–167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Russell, N. J. (1998). Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications. Advances in Biochemical Engineering/Biotechnology, 61, 1–21.

    Article  PubMed  CAS  Google Scholar 

  8. Cavicchioli, R. (2006). Cold-adapted archaea. Nature Reviews Microbiology, 4, 331–343.

    Article  PubMed  CAS  Google Scholar 

  9. Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., & Huner, N. P. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70, 222–252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Buzzini, P., Branda, E., Goretti, M., & Turchetti, B. (2012). Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 82, 217–241.

    Article  PubMed  CAS  Google Scholar 

  11. Margesin, R., Neuner, G., & Storey, K. B. (2007). Cold-loving microbes, plants, and animals–Fundamental and applied aspects. Naturwissenschaften, 94, 77–99.

    Article  PubMed  CAS  Google Scholar 

  12. Giordano, D., Russo, R., di Prisco, G., & Verde, C. (2012). Molecular adaptations in Antarctic fish and marine microorganisms. Marine Genomics, 6, 1–6.

    Article  PubMed  Google Scholar 

  13. Gilichinsky, D., Rivkina, E., Bakermans, C., Shcherbakova, V., Petrovskaya, L., Ozerskaya, S., Ivanushkina, N., Kochkina, G., Laurinavichuis, K., Pecheritsina, S., Fattakhova, R., & Tiedje, J. M. (2005). Biodiversity of cryopegs in permafrost. FEMS Microbiology Ecology, 53, 117–128.

    Article  PubMed  CAS  Google Scholar 

  14. Steven, B., Léveillé, R., Pollard, W. H., & Whyte, L. G. (2006). Microbial ecology and biodiversity in permafrost. Extremophiles, 10, 259–267.

    Article  PubMed  Google Scholar 

  15. Junge, K., Eicken, H., & Deming, J. W. (2004). Bacterial activity at -2 to -20 degrees C in Arctic wintertime sea ice. Applied and Environment Microbiology, 70, 550–557.

    Article  CAS  Google Scholar 

  16. Deming, J. W. (2002). Psychrophiles and polar regions. Current Opinion in Microbiology, 5, 301–309.

    Article  PubMed  CAS  Google Scholar 

  17. Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  18. Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129–138.

    Article  PubMed  CAS  Google Scholar 

  19. Collins, T., & Margesin, R. (2019). Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 103, 2857–2871.

    Article  PubMed  CAS  Google Scholar 

  20. Ghosh, M. & Pulicherla, K. K. (2021). Psychrophiles as the source for potential industrial psychrozymes. In R. Prasad R, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), Recent developments in microbial technologies (Vol. 16, pp. 355–366). Singapore: Springer Nature.

  21. Parvizpour, S., Hussin, N., Shamsir, M. S., & Razmara, J. (2021). Psychrophilic enzymes: Structural adaptation, pharmaceutical and industrial applications. Applied Microbiology and Biotechnology, 105, 899–907.

    Article  PubMed  CAS  Google Scholar 

  22. Kumari, M., Padhi, S., Sharma, S., Phukon, L. C., Singh, S. P., & Rai, A. K. (2021). Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech, 11, 479.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Al-Ghanayem, A. A., & Joseph, B. (2020). Current prospective in using cold-active enzymes as eco-friendly detergent additive. Applied Microbiology and Biotechnology, 104, 2871–2882.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar, A., Mukhia, S., & Kumar, R. (2021). Industrial applications of cold-adapted enzymes: Challenges, innovations and future perspective. 3 Biotech, 11, 426.

    Article  PubMed  PubMed Central  Google Scholar 

  25. GrandViewResearch. (2022). Enzymes market size, share & trends analysis report, 2030. Available from: https://www.grandviewresearch.com/industry-analysis/enzymes-industry. Accessed 31 Dec 2023

  26. Bruno, S., Coppola, D., di Prisco, G., Giordano, D., & Verde, C. (2019). Enzymes from marine polar regions and their biotechnological applications. Mar Drugs, 17, 544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hamid, B., Bashir, Z., Yatoo, A. M., Mohiddin, F., Majeed, N., Bansal, M., Poczai, P., Almalki, W. H., Sayyed, R. Z., Shati, A. A., & Alfaifi, M. Y. (2022). Cold-active enzymes and their potential industrial applications-A review. Molecules, 27, 5885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. D’Amico, S., Collins, T., Marx, J. C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7, 385–389.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4U, 226–248.

    Article  Google Scholar 

  30. Aghajari, N., Feller, G., Gerday, C., & Haser, R. (1998). Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Science, 7, 564–572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Barták, M., Váczi, P., Hájek, J., & Smykla, J. (2007). Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biology, 31, 47–51.

    Article  Google Scholar 

  32. Siddiqui, K. S., Williams, T. J., Wilkins, D., Yau, S., Allen, M. A., Brown, M. V., Lauro, F. M., & Cavicchioli, R. (2013). Psychrophiles. Annual Review of Earth and Planetary Sciences, 41, 87–115.

    Article  CAS  Google Scholar 

  33. Chintalapati, S., Kiran, M. D. & Shivaji, S. (2004). Role of membrane lipid fatty acids in cold adaptation. Molecular and Cellular Biology (Noisy-Le-Grand), 50, 631–642.

  34. Russell, N. J. (1997). Psychrophilic bacteria–Molecular adaptations of membrane lipids. Comparative Biochemistry and Physiology Part A, Physiology, 118, 489–493.

    Article  PubMed  CAS  Google Scholar 

  35. Russell, N. J. (2008). Membrane components and cold sensing. In R. Margesin, F. Schinner, J-C. Marx, & C. Gerday (Eds.), Psychrophiles: From biodiversity to biotechnology (Vol. 11, pp. 177–190) Berlin, Heidelberg: Springer.

  36. Yoshida, K., Hashimoto, M., Hori, R., Adachi, T., Okuyama, H., Orikasa, Y., Nagamine, T., Shimizu, S., Ueno, A., & Morita, N. (2016). Bacterial long-chain polyunsaturated fatty acids: Their biosynthetic genes, functions, and practical use. Marine Drugs, 14, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pandey, N., Jain, R., Pandey, A., & Tamta, S. (2018). Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology, 9, 81–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mykytczuk, N. C., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME Journal, 7, 1211–1226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., & Tiedje, J. M. (2008). Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach. BMC Genomics, 9, 547.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tribelli, P. M., & López, N. I. (2018). Reporting key features in cold-adapted bacteria. Life (Basel), 8, 8.

    PubMed  Google Scholar 

  41. Piette, F., D’Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., & Feller, G. (2011). Life in the cold: A proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Applied and Environment Microbiology, 77, 3881–3883.

    Article  Google Scholar 

  42. Médigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P. N., Cheung, F., Cruveiller, S., D’Amico, S., Duilio, A., Fang, G., Feller, G., Ho, C., Mangenot, S., Marino, G., Nilsson, J., Parrilli, E., Rocha, E. P., Rouy, Z., … Danchin, A. (2005). Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 15, 1325–1335.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tribelli, P. M., Solar Venero, E. C., Ricardi, M. M., Gómez-Lozano, M., Raiger Iustman, L. J., Molin, S., & López, N. I. (2015). Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE, 10, e0145353.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ayala-del-Río, H. L., Chain, P. S., Grzymski, J. J., Ponder, M. A., Ivanova, N., Bergholz, P. W., Di Bartolo, G., Hauser, L., Land, M., Bakermans, C., Rodrigues, D., Klappenbach, J., Zarka, D., Larimer, F., Richardson, P., Murray, A., Thomashow, M., & Tiedje, J. M. (2010). The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Applied and Environment Microbiology, 76, 2304–2312.

    Article  Google Scholar 

  45. Godin-Roulling, A., Schmidpeter, P. A., Schmid, F. X., & Feller, G. (2015). Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environmental Microbiology, 17, 2407–2420.

    Article  PubMed  CAS  Google Scholar 

  46. Baldwin, R. L. (2008). The search for folding intermediates and the mechanism of protein folding. Annual Review of Biophysics, 37, 1–21.

    Article  PubMed  CAS  Google Scholar 

  47. Lim, J., Thomas, T., & Cavicchioli, R. (2000). Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. Journal of Molecular Biology, 297, 553–567.

    Article  PubMed  CAS  Google Scholar 

  48. Bar Dolev, M., Braslavsky, I., & Davies, P. L. (2016). Ice-binding proteins and their function. Annual Review of Biochemistry, 85, 515–542.

    Article  PubMed  CAS  Google Scholar 

  49. Voets, I. K. (2017). From ice-binding proteins to bio-inspired antifreeze materials. Soft Matter, 13, 4808–4823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pummer, B., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C., Huber, R., Liedl, K., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C., Wex, H., Grothe, H., Pöschl, U., Koop, T., & Fröhlich-Nowoisky, J. (2015). Ice nucleation by water-soluble macromolecules. Atmospheric Chemistry and Physics, 15, 4077–4091.

    Article  CAS  Google Scholar 

  51. Pandey, R., Usui, K., Livingstone, R. A., Fischer, S. A., Pfaendtner, J., Backus, E. H., Nagata, Y., Fröhlich-Nowoisky, J., Schmüser, L., Mauri, S., Scheel, J. F., Knopf, D. A., Pöschl, U., Bonn, M., & Weidner, T. (2016). Ice-nucleating bacteria control the order and dynamics of interfacial water. Science Advances, 2, e1501630.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghobakhlou, A. F., Johnston, A., Harris, L., Antoun, H., & Laberge, S. (2015). Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics, 16, 383.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goordial, J., Raymond-Bouchard, I., Zolotarov, Y., de Bethencourt, L., Ronholm, J., Shapiro, N., Woyke, T., Stromvik, M., Greer, C. W., Bakermans, C. and Whyte, L. (2016) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiology Ecology, 92, fiv154.

  54. Ewert, M., & Deming, J. W. (2013). Sea ice microorganisms: Environmental constraints and extracellular responses. Biology (Basel), 2, 603–628.

    PubMed  Google Scholar 

  55. Deming, J. W., & Young, J. N. (2017). The role of exopolysaccharides in microbial adaptation to cold habitats. In R. Margesin (Ed.), Psychrophiles: From biodiversity to biotechnology, (vol. 12, pp. 259–284). Springer International Publishing.

  56. Perfumo, A., Banat, I. M., & Marchant, R. (2018). Going green and cold: Biosurfactants from low-temperature environments to biotechnology applications. Trends in Biotechnology, 36, 277–289.

    Article  PubMed  CAS  Google Scholar 

  57. Parvizpour, S., Razmara, J., Jomah, A. F., Shamsir, M. S., & Illias, R. M. (2015). Structural prediction of a novel laminarinase from the psychrophilic Glaciozyma antarctica PI12 and its temperature adaptation analysis. Journal of Molecular Modeling, 21, 63.

    Article  PubMed  Google Scholar 

  58. Paredes, D. I., Watters, K., Pitman, D. J., Bystroff, C., & Dordick, J. S. (2011). Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Structural Biology, 11, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hamdan, A. (2018). Psychrophiles: Ecological significance and potential industrial application. South African Journal of Science, 114, 6.

    Article  Google Scholar 

  60. Bjelic, S., Brandsdal, B. O., & Aqvist, J. (2008). Cold adaptation of enzyme reaction rates. Biochemistry, 47, 10049–10057.

    Article  PubMed  CAS  Google Scholar 

  61. Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., Ramchiary, N., & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochemical and Biophysical Research Communications, 469, 306–312.

    Article  PubMed  CAS  Google Scholar 

  62. Zanphorlin, L. M., de Giuseppe, P. O., Honorato, R. V., Tonoli, C. C., Fattori, J., Crespim, E., de Oliveira, P. S., Ruller, R., & Murakami, M. T. (2016). Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Science and Reports, 6, 23776.

    Article  CAS  Google Scholar 

  63. Karan, R., Mathew, S., Muhammad, R., Bautista, D. B., Vogler, M., Eppinger, J., Oliva, R., Cavallo, L., Arold, S. T., & Rueping, M. (2020). Understanding high-salt and cold adaptation of a polyextremophilic enzyme. Microorganisms, 8, 1594.

  64. De Prada, P., & Brenchley, J. E. (1997). Purification and characterization of two extracellular alkaline phosphatases from a psychrophilic arthrobacter isolate. Applied and Environment Microbiology, 63, 2928–2931.

    Article  Google Scholar 

  65. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cavicchioli, R., Charlton, T., Ertan, H., Mohd Omar, S., Siddiqui, K. S., & Williams, T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology, 4, 449–460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhu, D., Adebisi, W. A., Ahmad, F., Sethupathy, S., Danso, B., & Sun, J. (2020). Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol, 8, 483.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu, Y., Ji, M., Yu, T., Zaugg, J., Anesio, A. M., Zhang, Z., Hu, S., Hugenholtz, P., Liu, K., Liu, P., Chen, Y., Luo, Y., & Yao, T. (2022). A genome and gene catalog of glacier microbiomes. Nature Biotechnology, 40, 1341–1348.

    Article  PubMed  Google Scholar 

  69. Madhavan, A., Sindhu, R., Parameswaran, B., Sukumaran, R. K., & Pandey, A. (2017). Metagenome analysis: A powerful tool for enzyme bioprospecting. Applied Biochemistry and Biotechnology, 183, 636–651.

    Article  PubMed  CAS  Google Scholar 

  70. Fang, Z. M., Li, T. L., Chang, F., Zhou, P., Fang, W., Hong, Y. Z., Zhang, X. C., Peng, H., & Xiao, Y. Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41.

    Article  PubMed  CAS  Google Scholar 

  71. Thakur, M., Sharma, N., Rai, A. K., & Singh, S. P. (2021). A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch. Bioresource Technology, 320, 124288.

    Article  PubMed  CAS  Google Scholar 

  72. Profiti, G., Martelli, P. L., & Casadio, R. (2017). The Bologna annotation resource (BAR 3.0): Improving protein functional annotation. Nucleic Acids Research, 45, W285–W290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Prestat, E., David, M. M., Hultman, J., Taş, N., Lamendella, R., Dvornik, J., Mackelprang, R., Myrold, D. D., Jumpponen, A., Tringe, S. G., Holman, E., Mavromatis, K., & Jansson, J. K. (2014). FOAM (functional ontology assignments for metagenomes): A hidden Markov model (HMM) database with environmental focus. Nucleic Acids Research, 42, e145–e145.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., Kuhn, M., Jensen, L. J., von Mering, C., & Bork, P. (2015). eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 44, D286–D293.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Siriwat, W., Kalapanulak, S., Suksangpanomrung, M., & Saithong, T. (2018). Unlocking conserved and diverged metabolic characteristics in cassava carbon assimilation via comparative genomics approach. Science and Reports, 8, 16593.

    Article  Google Scholar 

  76. Vieites, J. M., Guazzaroni, M. E., Beloqui, A., Golyshin, P. N., & Ferrer, M. (2009). Metagenomics approaches in systems microbiology. FEMS Microbiology Reviews, 33, 236–255.

    Article  PubMed  CAS  Google Scholar 

  77. Simon, C., Herath, J., Rockstroh, S., & Daniel, R. (2009). Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Applied and Environment Microbiology, 75, 2964–2968.

    Article  CAS  Google Scholar 

  78. Chen, Q., Xiao, Y., Zhang, W., Stressler, T., Fischer, L., Jiang, B., & Mu, W. (2020). Computer-aided search for a cold-active cellobiose 2-epimerase. Journal of Dairy Science, 103, 7730–7741.

    Article  PubMed  CAS  Google Scholar 

  79. Tsuruta, H., Tsuneta, S. T., Ishida, Y., Watanabe, K., Uno, T., & Aizono, Y. (1998). Purification and some characteristics of phosphatase of a psychrophile. The Journal of Biochemistry, 123, 219–225.

    Article  PubMed  CAS  Google Scholar 

  80. Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., & Parra, L. P. (2016). Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology, 7, 1408.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., & King, J. (1991). Global suppression of protein folding defects and inclusion body formation. Science, 253, 54–58.

    Article  PubMed  CAS  Google Scholar 

  82. Xu, H., Wang, Q., Zhang, Z., Yi, L., Ma, L., & Zhai, C. (2019). A simplified method to remove fusion tags from a xylanase of Bacillus sp. HBP8 with HRV 3C protease. Enzyme and Microbial Technology, 123, 15–20.

    Article  PubMed  CAS  Google Scholar 

  83. Niiranen, L., Espelid, S., Karlsen, C. R., Mustonen, M., Paulsen, S. M., Heikinheimo, P., & Willassen, N. P. (2007). Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli. Protein Expression and Purification, 52, 210–218.

    Article  PubMed  CAS  Google Scholar 

  84. Parra, L. P., Reyes, F., Acevedo, J. P., Salazar, O., Andrews, B. A., & Asenjo, J. A. (2008). Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme and Microbial Technology, 42, 371–377.

    Article  CAS  Google Scholar 

  85. Whitley, D., Goldberg, S. P., & Jordan, W. D. (1999). Heat shock proteins: A review of the molecular chaperones. Journal of Vascular Surgery, 29, 748–751.

    Article  PubMed  CAS  Google Scholar 

  86. Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.

    Article  PubMed  CAS  Google Scholar 

  87. de Marco, A. (2007). Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nature Protocols, 2, 2632–2639.

    Article  PubMed  Google Scholar 

  88. Ferrer, M., Chernikova, T. N., Timmis, K. N., & Golyshin, P. N. (2004). Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Applied and Environment Microbiology, 70, 4499–4504.

    Article  CAS  Google Scholar 

  89. Kim, H. W., Wi, A. R., Jeon, B. W., Lee, J. H., Shin, S. C., Park, H., & Jeon, S. J. (2015). Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Biotechnology Letters, 37, 1887–1893.

    Article  PubMed  CAS  Google Scholar 

  90. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M., & Inouye, M. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877–882.

    Article  PubMed  CAS  Google Scholar 

  91. Shuo-shuo, C., Xue-zheng, L., & Ji-hong, S. (2011). Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expression and Purification, 77, 166–172.

    Article  PubMed  Google Scholar 

  92. Cusano, A. M., Parrilli, E., Marino, G., & Tutino, M. L. (2006). A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microbial Cell Factories, 5, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao, D.-L., Yu, Z.-C., Li, P.-Y., Wu, Z.-Y., Chen, X.-L., Shi, M., Yu, Y., Chen, B., Zhou, B.-C., & Zhang, Y.-Z. (2011). Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microbial Cell Factories, 10, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mao, Y., Yin, Y., Zhang, L., Alias, S. A., Gao, B., & Wei, D. (2015). Development of a novel Aspergillus uracil deficient expression system and its application in expressing a cold-adapted α-amylase gene from Antarctic fungi Geomyces pannorum. Process Biochemistry, 50, 1581–1590.

    Article  CAS  Google Scholar 

  95. Kobori, H., Sullivan, C. W., & Shizuya, H. (1984). Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end-labeling of nucleic acids. Proc Natl Acad Sci U S A, 81, 6691–6695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Olsen, R. L., Øverbø, K., & Myrnes, B. (1991). Alkaline phophatase from the hepatopancreas of shrimp (Pandalus borealis): A dimeric enzyme with catalytically active subunits. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 99, 755–761.

    Article  Google Scholar 

  97. Rina, M., Pozidis, C., Mavromatis, K., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2000). Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. European Journal of Biochemistry, 267, 1230–1238.

    Article  PubMed  CAS  Google Scholar 

  98. Recombinant alkaline phosphatase and uses thereof Patent. (2013). US Patent 8486665. Available from: https://patents.justia.com/patent/8486665. Accessed 31 Dec 2023

  99. de Prada, P., Loveland-Curtze, J., & Brenchley, J. E. (1996). Production of two extracellular alkaline phosphatases by a psychrophilic arthrobacter strain. Applied and Environment Microbiology, 62, 3732–3738.

    Article  Google Scholar 

  100. Ishida, Y., Tsuruta, H., Tsuneta, S. T., Uno, T., Watanabe, K., & Aizono, Y. (1998). Characteristics of psychrophilic alkaline phosphatase. Bioscience, Biotechnology, and Biochemistry, 62, 2246–2250.

    Article  PubMed  CAS  Google Scholar 

  101. Hauksson, J. B., Andrésson, O. S., & Ásgeirsson, B. (2000). Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enyzme and Microbial Technology, 27, 66–73.

    Article  CAS  Google Scholar 

  102. Asgeirsson, B., Hauksson, J. B., & Gunnarsson, G. H. (2000). Dissociation and unfolding of cold-active alkaline phosphatase from Atlantic cod in the presence of guanidinium chloride. European Journal of Biochemistry, 267, 6403–6412.

    Article  PubMed  CAS  Google Scholar 

  103. Lee, D.-H., Choi, S.-L., Rha, E., Kim, S. J., Yeom, S.-J., Moon, J.-H., & Lee, S.-G. (2015). A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology, 15, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kim, H., Park, A. K., Lee, J. H., Kim, H.-W., & Shin, S. C. (2018). Complete genome sequence of Colwellia hornerae PAMC 20917, a cold-active enzyme-producing bacterium isolated from the Arctic Ocean sediment. Marine Genomics, 41, 54–56.

    Article  Google Scholar 

  105. Golotin, V., Balabanova, L., Likhatskaya, G., & Rasskazov, V. (2015). Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Marine Biotechnology (New York, N.Y.), 17, 130–143.

    Article  PubMed  CAS  Google Scholar 

  106. Sarmiento, F., Peralta, R., & Blamey, J. M. (2015). Cold and hot extremozymes: Industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology, 3, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sobek, H., Schmidt, M., Frey, B., & Kaluza, K. (1996). Heat-labile uracil-DNA glycosylase: Purification and characterization. FEBS Letters, 388, 1–4.

    Article  PubMed  CAS  Google Scholar 

  108. Lanes, O., Guddal, P. H., Gjellesvik, D. R., & Willassen, N. P. (2000). Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127, 399–410.

    Article  CAS  Google Scholar 

  109. Kim, G. A., Lee, M. S., Sun, Y., Lee, B. D., Lee, J. I., Lee, J.-H., & Kwon, S.-T. (2008). Characterization of cold-active uracil-DNA glycosylase from Bacillus sp. HJ171 and its use for contamination control in PCR. Applied Microbiology and Biotechnology, 80, 785–794.

    Article  PubMed  CAS  Google Scholar 

  110. Lee, M. S., Kim, G. A., Seo, M. S., Lee, J. H., & Kwon, S. T. (2009). Characterization of heat-labile uracil-DNA glycosylase from Psychrobacter sp. HJ147 and its application to the polymerase chain reaction. Biotechnology and Applied Biochemistry, 52, 167–175.

    Article  PubMed  CAS  Google Scholar 

  111. Kim, G. A., Sun, Y., Song, J.-G., Bae, H., Kim, J.-H., & Kwon, S.-T. (2009). Properties of cold-active uracil-DNA glycosylase from Photobacterium aplysiae GMD509, and its PCR application for carryover contamination control. Enzyme and Microbial Technology, 44, 263–268.

    Article  CAS  Google Scholar 

  112. Mangiagalli, M., Brocca, S., Orlando, M., & Lotti, M. (2020). The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnology, 55, 5–11.

    Article  PubMed  CAS  Google Scholar 

  113. Shiomi, K., Midorikawa, S., Ishida, M., Nagashima, Y., & Nagai, H. (2004). Plancitoxins, lethal factors from the crown-of-thorns starfish Acanthaster planci, are deoxyribonucleases II. Toxicon, 44, 499–506.

    Article  PubMed  CAS  Google Scholar 

  114. Øverbø, K., & Myrnes, B. (2006). Deoxyribonuclease II from the Icelandic scallop (Chlamys islandica): Isolation and partial characterization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143, 315–318.

    Article  Google Scholar 

  115. Sulthana, S., Rajyaguru, P. I., Mittal, P., & Ray, M. K. (2011). rnr gene from the Antarctic bacterium Pseudomonas syringae Lz4W, encoding a psychrophilic RNase R. Applied and Environment Microbiology, 77, 7896–7904.

    Article  CAS  Google Scholar 

  116. Wang, Y., Hou, Y., Nie, P., Wang, Y., Ren, X., Wei, Q., & Wang, Q. (2019). A novel cold-adapted and salt-tolerant RNase R from Antarctic Sea-Ice bacterium Psychrobacter sp. ANT206. Molecules, 24, 2229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Maciejewska, N., Walkusz, R., Olszewski, M., & Szymańska, A. (2019). New nuclease from extremely psychrophilic microorganism Psychromonas ingrahamii 37: Identification and characterization. Molecular Biotechnology, 61, 122–133.

    Article  PubMed  CAS  Google Scholar 

  118. Microorganism-derived psychrophilic endonuclease. (2011). US Patent No 8034597 B2. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-8034597-B2. Accessed 31 Dec 2023

  119. Xue, Y., Braslavsky, I., & Quake, S. R. (2021). Temperature effect on polymerase fidelity. Journal of Biological Chemistry, 297, 101270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhu, B., Tabor, S., Raytcheva, D. A., Hernandez, A., King, J. A., & Richardson, C. C. (2013). The RNA polymerase of marine cyanophage Syn5. Journal of Biological Chemistry, 288, 3545–3552.

    Article  PubMed  CAS  Google Scholar 

  121. Zhu, B., Tabor, S., & Richardson, C. C. (2013). Syn5 RNA polymerase synthesizes precise run-off RNA products. Nucleic Acids Research, 42, e33–e33.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, G., Cheng, R., Chen, Q., Xu, Y., Yu, B., Zhu, B., Yin, H., & Xia, H. (2022). mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. Cell Insight, 1, 100056.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Xia, H., Yu, B., Jiang, Y., Cheng, R., Lu, X., Wu, H., & Zhu, B. (2022). Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biology, 19, 1130–1142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ernst, F. G. M., Erber, L., Sammler, J., Jühling, F., Betat, H., & Mörl, M. (2018). Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biology, 15, 144–155.

    Article  PubMed  Google Scholar 

  125. Georlette, D., Jónsson, Z. O., Van Petegem, F., Chessa, J., Van Beeumen, J., Hübscher, U., & Gerday, C. (2000). A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. European Journal of Biochemistry, 267, 3502–3512.

    Article  PubMed  CAS  Google Scholar 

  126. Williamson, A., & Pedersen, H. (2014). Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expression and Purification, 97, 29–36.

    Article  PubMed  CAS  Google Scholar 

  127. Duplantis, B. N., Osusky, M., Schmerk, C. L., Ross, D. R., Bosio, C. M., & Nano, F. E. (2010). Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proceedings of the National Academy of Sciences, 107, 13456–13460.

    Article  CAS  Google Scholar 

  128. ArcticZymes-technologies. ArcticZymes Proteinase. Available from: https://www.arcticzymes.com/product-details/arcticzymes-proteinase. Accessed 31 Dec 2023

  129. Clarsund, M., Blom, U., & Gardulf, A. (2016). Evaluation of ColdZyme® Mouth Spray on prevention of upper respiratory tract infections in a boy with primary immunodeficiency: A case report. Journal of Medical Case Reports, 10, 302.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Brunel, C., & Cathala, G. (1973). Activation and inhibition processes of alkaline phosphatase from bovine brain by metal ions (Mg 2+ and Zn 2+ ). Biochimica et Biophysica Acta, 309, 104–115.

    Article  PubMed  CAS  Google Scholar 

  131. Cathala, G., & Brunel, C. (1975). Bovine kidney alkaline phosphatase. Catalytic properties, subunit interactions in the catalytic process, and mechanism of Mg2+ stimulation. Journal of Biological Chemistry, 250, 6046–6053.

    Article  PubMed  CAS  Google Scholar 

  132. Kim, E. E., & Wyckoff, H. W. (1991). Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. Journal of Molecular Biology, 218, 449–464.

    Article  PubMed  CAS  Google Scholar 

  133. Stec, B., Holtz, K. M., & Kantrowitz, E. R. (2000). A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Journal of Molecular Biology, 299, 1303–1311.

    Article  PubMed  CAS  Google Scholar 

  134. Engstrom, L. (1961). Studies on calf-intestinal alkaline phosphatase. I. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme. Biochimica et Biophysica Acta, 52, 36–48.

    Article  PubMed  CAS  Google Scholar 

  135. Hoffman, L. M., & Jendrisak, J. (1990). Heat-labile phosphatase simplifies the preparation of dephosphorylated vector DNA. Gene, 88, 97–99.

    Article  PubMed  CAS  Google Scholar 

  136. Tsigos, I., Mavromatis, K., Tzanodaskalaki, M., Pozidis, C., Kokkinidis, M., & Bouriotis, V. (2001). Engineering the properties of a cold active enzyme through rational redesign of the active site. European Journal of Biochemistry, 268, 5074–5080.

    Article  PubMed  CAS  Google Scholar 

  137. Mavromatis, K., Tsigos, I., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2002). Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase. European Journal of Biochemistry, 269, 2330–2335.

    Article  PubMed  CAS  Google Scholar 

  138. Wang, E., Koutsioulis, D., Leiros, H. K., Andersen, O. A., Bouriotis, V., Hough, E., & Heikinheimo, P. (2007). Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. Journal of Molecular Biology, 366, 1318–1331.

    Article  PubMed  CAS  Google Scholar 

  139. Koutsioulis, D., Wang, E., Tzanodaskalaki, M., Nikiforaki, D., Deli, A., Feller, G., Heikinheimo, P., & Bouriotis, V. (2008). Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Engineering, Design & Selection, 21, 319–327.

    Article  CAS  Google Scholar 

  140. Koutsioulis, D., Lyskowski, A., Mäki, S., Guthrie, E., Feller, G., Bouriotis, V., & Heikinheimo, P. (2010). Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases. Protein Science, 19, 75–84.

    Article  PubMed  CAS  Google Scholar 

  141. Lu, Z., Chen, W., Liu, R., Hu, X., & Ding, Y. (2010). A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase. Protein Expression and Purification, 74, 217–222.

    Article  PubMed  CAS  Google Scholar 

  142. Morrison, H. (2021). Uracil-DNA glycosylase. In H. Morrison (Ed.), Enzyme active sites and their reaction mechanisms (Vol. 39, pp. 239–244). Academic Press.

  143. Visnes, T., Doseth, B., Pettersen, H. S., Hagen, L., Sousa, M. M., Akbari, M., Otterlei, M., Kavli, B., Slupphaug, G., & Krokan, H. E. (2009). Uracil in DNA and its processing by different DNA glycosylases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 563–568.

    Article  PubMed  CAS  Google Scholar 

  144. Barnes, D. E., & Lindahl, T. (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annual Review of Genetics, 38, 445–476.

    Article  PubMed  CAS  Google Scholar 

  145. Tu, J., Chen, R., Yang, Y., Cao, W., & Xie, W. (2019). Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nature Chemical Biology, 15, 615–622.

    Article  PubMed  CAS  Google Scholar 

  146. Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature, 384, 87–92.

    Article  PubMed  CAS  Google Scholar 

  147. Hsieh, K., Mage, P. L., Csordas, A. T., Eisenstein, M., & Soh, H. T. (2014). Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chemical Communications (Cambridge, England), 50, 3747–3749.

    Article  PubMed  CAS  Google Scholar 

  148. Tang, Y., Chen, H., & Diao, Y. (2016). Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Science and Reports, 6, 27605.

    Article  CAS  Google Scholar 

  149. Hu, Y. (2016). Regulatory concern of polymerase chain reaction (PCR) carryover contamination. In A. Samadikuchaksaraei (Ed.), Polymerase chain reaction for biomedical applications (vol. 4, pp. 58–68). InTech.

  150. Lanes, O., Leiros, I., Smalås, A. O., & Willassen, N. (2002). Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): Characterization and homology modeling of the cold-active catalytic domain. Extremophiles, 6, 73–86.

    Article  PubMed  CAS  Google Scholar 

  151. Olufsen, M., Smalås, A. O., Moe, E., & Brandsdal, B. O. (2005). Increased flexibility as a strategy for cold adaptation: A comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase*. Journal of Biological Chemistry, 280, 18042–18048.

    Article  PubMed  CAS  Google Scholar 

  152. Assefa, N. G., Niiranen, L., Willassen, N. P., Smalås, A., & Moe, E. (2012). Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 161, 60–68.

    Article  CAS  Google Scholar 

  153. Yang, W. (2011). Nucleases: Diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 44, 1–93.

    Article  PubMed  Google Scholar 

  154. Maunders, M. J. (1993). DNA Polymerases (EC 2.7.7.7). In M. M. Burrell (Ed.), Enzymes of molecular biology (Vol. 3, pp. 17–30). Humana Press.

  155. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  156. Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 108, 1–6.

    Article  PubMed  CAS  Google Scholar 

  157. Kim, S. W., Kim, D. U., Kim, J. K., Kang, L. W., & Cho, H. S. (2008). Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. International Journal of Biological Macromolecules, 42, 356–361.

    Article  PubMed  Google Scholar 

  158. Meyer, A. S., & Grainger, D. C. (2013). The Escherichia coli nucleoid in stationary phase. In S. Sariaslani, & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 83, pp. 69–86). Academic Press.

  159. Summers, W. C., & Siegel, R. B. (1970). Transcription of late phage RNA by T7 RNA polymerase. Nature, 228, 1160–1162.

    Article  PubMed  CAS  Google Scholar 

  160. Cheetham, G. M., Jeruzalmi, D., & Steitz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature, 399, 80–83.

    Article  PubMed  CAS  Google Scholar 

  161. Eun, H.-M. (1996). Ligases. In H.-M. Eun (Ed.), Enzymology primer for recombinant DNA technology (vol 2, pp. 109–144). Academic Press.

  162. Lehman, I. R. (1974). DNA ligase: Structure, mechanism, and function. Science, 186, 790–797.

    Article  PubMed  CAS  Google Scholar 

  163. Williamson, A., & Leiros, H. S. (2020). Structural insight into DNA joining: From conserved mechanisms to diverse scaffolds. Nucleic Acids Research, 48, 8225–8242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sambrook, J. F., Fritsch, E. F., & Maniatis, T. (1983). Molecular cloning: A laboratory manual, (1st Ed). NY: CSH press.

  165. Duplantis, B. N., Puckett, S. M., Rosey, E. L., Ameiss, K. A., Hartman, A. D., Pearce, S. C., & Nano, F. E. (2015). Temperature-sensitive Salmonella enterica Serovar Enteritidis PT13a expressing essential proteins of psychrophilic bacteria. Applied and Environmental Microbiology, 81, 6757–6766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Pinto, C. T., & Nano, F. E. (2015). Stable, temperature-sensitive recombinant strain of Mycobacterium smegmatis generated through the substitution of a psychrophilic ligA gene. FEMS Microbiology Letters, 362, fnv152.

  167. Pankowski, J. A., Puckett, S. M., & Nano, F. E. (2016). Temperature sensitivity conferred by ligA alleles from psychrophilic bacteria upon substitution in mesophilic bacteria and a yeast species. Applied and Environmental Microbiology, 82, 1924–1932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Unciuleac, M. C., Goldgur, Y., & Shuman, S. (2015). Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proceedings of the National Academy of Sciences, 112, 13868–13873.

    Article  CAS  Google Scholar 

  169. Pascal, J. M. (2008). DNA and RNA ligases: Structural variations and shared mechanisms. Current Opinion in Structural Biology, 18, 96–105.

    Article  PubMed  CAS  Google Scholar 

  170. Nichols, N. M., Tabor, S., & McReynolds, L. A. (2008). RNA ligases. Current Protocols in Molecular Biology, Chapter, 3(Unit3), 15.

    Google Scholar 

  171. Uhlenbeck, O. C., & Gumport, R. I. (1982). 2 T4 RNA ligase. The Enzymes, 15, 31–58.

    Article  CAS  Google Scholar 

  172. Heckler, T. G., Chang, L. H., Zama, Y., Naka, T., Chorghade, M. S., & Hecht, S. M. (1984). T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPheS. Biochemistry, 23(7), 1468–1473.

    Article  PubMed  CAS  Google Scholar 

  173. Ho, C. K., Wang, L. K., Lima, C. D., & Shuman, S. (2004). Structure and mechanism of RNA ligase. Structure, 12, 327–339.

    Article  PubMed  CAS  Google Scholar 

  174. Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579, 5830–5840.

    Article  PubMed  CAS  Google Scholar 

  175. ArcticZymes-technologies. ArcticZymes R2D Ligase. Available from: https://www.arcticzymes.com/product-details/arcticzymes-r2d-ligase-unique-atp-dependent-dsdna-ligase-able-to-join-rna-to-dna. Accessed 31 Dec 2023.

  176. Zhu, D., Wu, Q., & Hua, L. (2019). Industrial Enzymes. In M. Moo-Young (Ed.), Comprehensive biotechnology (3rd Ed., Vol. 3, pp. 1–13). Oxford: Pergamon.

  177. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., & Lang, H. (1974). Proteinase K from Tritirachium album Limber. European Journal of Biochemistry, 47, 91–97.

    Article  PubMed  CAS  Google Scholar 

  178. Rivoal, R., Valette, S., Bekal, S., Gauthier, J.-P., & Yahyaoui, A. (2003). Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis. European Journal of Plant Pathology, 109, 227–241.

    Article  CAS  Google Scholar 

  179. Lehmann, R., & Tautz, D. (1994). In situ hybridization to RNA. In L. S. B. Goldstein, & E. A. yrberg (Ed.), Methods in cell biology (Vol. 44, pp. 575–598). Academic Press. 

  180. Sajnani, G., & Requena, J. R. (2012). Prions, proteinase K and infectivity. Prion, 6, 430–432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Betzel, C., Bellemann, M., Pal, G. P., Bajorath, J., Saenger, W., & Wilson, K. S. (1988). X-ray and model-building studies on the specificity of the active site of proteinase K. Proteins, 4, 157–164.

    Article  PubMed  CAS  Google Scholar 

  182. Bajorath, J., Hinrichs, W., & Saenger, W. (1988). The enzymatic activity of proteinase K is controlled by calcium. European Journal of Biochemistry, 176, 441–447.

    Article  PubMed  CAS  Google Scholar 

  183. Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 102, 4501–4524.

    Article  PubMed  CAS  Google Scholar 

  184. Bhatia, R. K., Ullah, S., Hoque, M. Z., Ahmad, I., Yang, Y.-H., Bhatt, A. K., & Bhatia, S. K. (2021). Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. Journal of Environmental Chemical Engineering, 9, 104607.

    Article  CAS  Google Scholar 

  185. Paunovska, K., Loughrey, D., & Dahlman, J. E. (2022). Drug delivery systems for RNA therapeutics. Nature Reviews Genetics, 23, 265–280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Fornbacke, M., & Clarsund, M. (2013). Cold-adapted proteases as an emerging class of therapeutics. Infectious Diseases and Therapy, 2, 15–26.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Huang, W., Sun, Y. M., Pan, Q., Fang, K., Chen, X. T., Zeng, Z. C., Chen, T. Q., Zhu, S. X., Huang, L. B., Luo, X. Q., Wang, W. T., & Chen, Y. Q. (2022). The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discovery, 8, 117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Chen, L., Wang, Y., Lin, J., Song, Z., Wang, Q., Zhao, W., Wang, Y., Xiu, X., Deng, Y., Li, X., Li, Q., Wang, X., Li, J., Liu, X., Liu, K., Zhou, J., Li, K., Liu, Y., Liao, S., … Shan, G. (2022). Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nature Communications, 13, 5769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zhang, L., Delgado-Baquerizo, M., Shi, Y., Liu, X., Yang, Y., & Chu, H. (2021). Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. Water Research, 198, 117139.

    Article  PubMed  CAS  Google Scholar 

  190. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.

    Article  Google Scholar 

  191. Chen, Y., Tian, Q., Wang, H., Ma, R., Han, R., Wang, Y., Ge, H., Ren, Y., Yang, R., Yang, H., Chen, Y., Duan, X., Zhang, L., Gao, J., Gao, L., Yan, X., & Qin, Y. (2022) A manganese-based metal-organic framework as a cold-adapted nanozyme. Advanced Materials e2206421.

  192. Chen, K., Huang, T., Liu, E., Lu, Y., Huo, Z., Mi, L., Zhang, W., & Frazer, I. (2020). The innovation: A journal to see the unseen and change the unchanged. Innovation (Cambridge), 1, 100014.

    Google Scholar 

Download references

Funding

This work was supported by the Key Support Project of the Regional Joint Fund of the National Natural Science Foundation of China U21A20176 and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) 2019QZKK0503 for YQL.

Author information

Authors and Affiliations

Authors

Contributions

YQL and DWX conceived the presented idea. HX wrote the manuscript with support from YQL and DWX. All the authors contributed to the final manuscript.

Corresponding authors

Correspondence to Dawei Xu or Yongqin Liu.

Ethics declarations

Consent for Publication

The manuscript was approved by all the authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Xu, D. & Liu, Y. Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04810-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04810-5

Keywords

Navigation