Skip to main content
Log in

An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes are commonly used as biocatalysts for various biological and chemical processes in industrial applications. However, their limited operational stability, catalytic efficiency, poor reusability, and high-cost hamper further industrial usage. Thus, crosslinked enzyme aggregates (CLEAs) are developed as a better enzyme immobilization tool to extend the enzymes’ operational stability. This immobilization method is appealing because it is simpler due to the absence of ballast and permits the collective use of crude enzyme cocktails. CLEAs, so far, have been successfully developed using a variety of enzymes, viz., hydrolases, proteases, amidases, lipases, esterases, and oxidoreductase. Recent years have seen the emergence of novel strategies for preparing better CLEAs, which include the combi- and multi-CLEAs, magnetics CLEAs, and porous CLEAs for various industrial applications, viz., laundry detergents, organic synthesis, food industries, pharmaceutical applications, oils, and biodiesel production. To better understand the different strategies for CLEAs’ development, this review explores these strategies and highlights the relevant concerns in designing innovative CLEAs. This article also details the challenges faced during CLEAs preparation and solutions for overcoming them. Finally, the trending strategies to improve the preparation of CLEAs alongside their industrial application trends are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2011, RSC advances

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aggarwal, S., Chakravarty, A., & Ikram, S. (2021). A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. International Journal of Biological Macromolecules, 167, 962–986.

    Article  CAS  PubMed  Google Scholar 

  2. Sheldon, R. (2019). CLEAs, Combi-CLEAs and ‘smart’ magnetic CLEAs: Biocatalysis in a Bio-Based Economy. Catalysts, 9(3), 261.

    Article  CAS  Google Scholar 

  3. Cavalcante, F. T. T., et al. (2021). Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288, 119577.

    Article  CAS  Google Scholar 

  4. Sampaio, C. S., et al. (2022). Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. International Journal of Biological Macromolecules, 215, 434–449.

    Article  CAS  PubMed  Google Scholar 

  5. Girelli, A. M., Astolfi, M. L., & Scuto, F. R. (2020). Agro-industrial wastes as potential carriers for enzyme immobilization: A review. Chemosphere, 244, 125368.

    Article  CAS  PubMed  Google Scholar 

  6. Mulinari, J., Oliveira, J. V., & Hotza, D. (2020). Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnology Advances, 42, 107581.

    Article  CAS  PubMed  Google Scholar 

  7. Filho, D. G., Silva, A. G., & Guidini, C. Z. (2019). Lipases: Sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology, 103(18), 7399–7423.

    Article  PubMed  Google Scholar 

  8. Ismail, A. R., & Baek, K. H. (2020). Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. International Journal of Biological Macromolecules, 163, 1624–1639.

    Article  CAS  PubMed  Google Scholar 

  9. Imam, H. T., Marr, P. C., & Marr, A. C. (2021). Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 23(14), 4980–5005.

    Article  CAS  Google Scholar 

  10. Chen, P.-C., et al. (2019). Fabrication and optimization of a lipase immobilized enzymatic membrane bioreactor based on polysulfone gradient-pore hollow fiber membrane. Catalysts, 9(6), 495.

    Article  CAS  Google Scholar 

  11. Cao, L., Langen, L. V., & Sheldon, R. A. (2003). Immobilised enzymes: Carrier-bound or carrier-free? Current Opinion in Biotechnology, 14(4), 387–394.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, R., et al. (2021). Effect of cross-linked enzyme aggregate strategy on characterization of sn-1,3 extracellular lipase from Aspergillus niger GZUF36. Applied Microbiology and Biotechnology, 105(5), 1925–1941.

    Article  CAS  PubMed  Google Scholar 

  13. Rehman, S., et al. (2016). Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. International Journal of Biological Macromolecules, 91, 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  14. Talekar, S., et al. (2013). Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Advances, 3(31), 12485.

    Article  CAS  Google Scholar 

  15. Hassan, M. E., et al. (2019). Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech, 9(12), 440.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kulkarni, N. H., et al. (2020). Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: Process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess and Biosystems Engineering, 43(3), 457–471.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y., et al. (2021). Carrier-free immobilization of alpha-galactosidase as nano-biocatalysts for synthesizing prebiotic alpha-galacto-oligosaccharides. Molecules, 26(5), 1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahrari, F., et al. (2022). Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); Selective enrichment of polyunsaturated fatty acids. Molecular Catalysis, 520, 112172.

    Article  CAS  Google Scholar 

  19. Xu, M.-Q., et al. (2018). Combined cross-linked enzyme aggregates as biocatalysts. Catalysts, 8(10), 460.

    Article  Google Scholar 

  20. Sharifi, M., et al. (2020). Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. Journal of Biomolecular Structure & Dynamics, 38(9), 2746–2762.

    Article  CAS  Google Scholar 

  21. Barbosa, O., et al. (2014). Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4(4), 1583–1600.

    Article  CAS  Google Scholar 

  22. Dietmar, H., & Schreier, P. (1999). Cross-linked enzyme crystals. Current Opinion in Chemical Biology, 3, 35–38.

    Article  Google Scholar 

  23. Voberkova, S., et al. (2018). Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere, 202, 694–707.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, M., et al. (2011). Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresource Technology, 102(3), 3541–3545.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, S., et al. (2018). Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technology, 330, 40–49.

    Article  CAS  Google Scholar 

  26. Chandra, P., et al. (2020). Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories, 19(1), 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, H. D., et al. (2019). Enzymatic cross-linking of dynamic thiol-norbornene click hydrogels. ACS Biomaterials Science & Engineering, 5(3), 1247–1256.

    Article  CAS  Google Scholar 

  28. Velasco-Lozano, S., et al. (2016). Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review. Biocatalysis, 1(1). https://doi.org/10.1515/boca-2015-0012

  29. Cao, L., Rantwijk, F., & Sheldon, R. A. (2000). Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Organic Letters, 2(10), 1361–1364.

    Article  CAS  PubMed  Google Scholar 

  30. Nawawi, N. N., et al. (2020). A porous-cross linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1: Robust biocatalyst with improved stability and substrate diffusion. International Journal of Biological Macromolecules, 148, 1222–1231.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi, H., Kiyota, Y., & Miyazaki, M. (2018). Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts, 8(5), 174.

    Article  Google Scholar 

  32. Valdés, E. C., Soto, L. W., & Arcaya, G. A. (2011). Influence of the pH of glutaraldehyde and the use of dextran aldehyde on the preparation of cross-linked enzyme aggregates (CLEAs) of lipase from Burkholderia cepacia. Electronic Journal of Biotechnology, 14(3). https://doi.org/10.2225/vol14-issue3-fulltext-1

  33. Farhan, L. O., et al. (2021). Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts. International Journal of Biological Macromolecules, 182, 217–227.

    Article  CAS  PubMed  Google Scholar 

  34. de Sousa, M., et al. (2020). Preparation of CLEAs and magnetic CLEAs of a recombinant l-arabinose isomerase for d-tagatose synthesis. Enyzme and Microbial Technology, 138, 109566.

    Article  Google Scholar 

  35. Muley, A. B., et al. (2021). Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: Process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess and Biosystems Engineering, 44(7), 1383–1404.

    Article  CAS  PubMed  Google Scholar 

  36. Oliart-Ros, R. M., et al. (2021). Production and characterization of cross-linked aggregates of Geobacillus thermoleovorans CCR11 thermoalkaliphilic recombinant lipase. Molecules, 26(24), 7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abd Rahman, N. H., et al. (2021). Efficient substrate accessibility of cross-linked levanase aggregates using dialdehyde starch as a macromolecular cross-linker. Carbohydrate Polymers, 267, 118159.

    Article  CAS  PubMed  Google Scholar 

  38. Li, T., et al. (2022). Cross-linked enzyme aggregates (CLEAs) of cellulase with improved catalytic activity, adaptability and reusability. Bioprocess and Biosystems Engineering, 45, 865.

    Article  PubMed  Google Scholar 

  39. Badoei-dalfard, A., Malekabadi, S., & Karami, Z. (2019). Sargazi, G, Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renewable Energy, 141, 874.

    Article  CAS  Google Scholar 

  40. Velasco-Lozano, S., et al. (2020). Stabilization of omega-transaminase from Pseudomonas fluorescens by immobilization techniques. International Journal of Biological Macromolecules, 164, 4318–4328.

    Article  CAS  PubMed  Google Scholar 

  41. Miranda, L. P., et al. (2020). Composites of crosslinked aggregates of Eversa® transform and magnetic nanoparticles. Performance in the ethanolysis of soybean oil. Catalysts, 10(8), 817.

    Article  CAS  Google Scholar 

  42. Zerva, A., Pentari, C., & Topakas, E. (2020). Crosslinked enzyme aggregates (CLEAs) of laccases from Pleurotus citrinopileatus induced in olive oil mill wastewater (OOMW). Molecules, 25(9), 2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong, S. S., & Wong, L. J. C. (1992). Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme and Microbial Technology, 14, 866.

    Article  CAS  PubMed  Google Scholar 

  44. La Rotta Hernandez, C. E., et al. (2005). Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzyme and Microbial Technology, 37(6), 582–588.

    Article  Google Scholar 

  45. Gunda, N. S. K., et al. (2014). Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 305, 522–530.

    Article  CAS  Google Scholar 

  46. Yan, E.-K., et al. (2015). Cross-linked protein crystals by glutaraldehyde and their applications. RSC Advances, 5(33), 26163–26174.

    Article  CAS  Google Scholar 

  47. Isabelle, M., Catherine, D., Michel, J. B., & Karen, C. W. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37, 790–802.

    Article  Google Scholar 

  48. Aytar, B. S., & Bakir, U. (2008). Preparation of cross-linked tyrosinase aggregates. Process Biochemistry, 43(2), 125–131.

    Article  CAS  Google Scholar 

  49. Abd Rahman, N. H., et al. (2020). Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. International Journal of Biological Macromolecules, 159, 577–589.

    Article  CAS  PubMed  Google Scholar 

  50. Saikia, K., et al. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 170, 583–592.

    Article  CAS  PubMed  Google Scholar 

  51. Miao, C., et al. (2019). Synthesis and properties of porous CLEAs lipase by the calcium carbonate template method and its application in biodiesel production. RSC Advances, 9(51), 29665–29675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Diaz-Vidal, T., et al. (2019). Cross-linked enzyme aggregates of recombinant Candida antarctica lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue. Biotechnology Progress, 35(4), e2807.

    Article  PubMed  Google Scholar 

  53. Arastoo, B., Karamia, B., & Malekabadia, S. (2019). Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresource Technology, 278, 473–476.

    Article  Google Scholar 

  54. Atiroglu, V. (2020). Lipase immobilization on synthesized hyaluronic acid-coated magnetic nanoparticle-functionalized graphene oxide composites as new biocatalysts: Improved reusability, stability, and activity. International Journal of Biological Macromolecules, 145, 456–465.

    Article  CAS  PubMed  Google Scholar 

  55. Talekar, S., et al. (2020). Greener production of low methoxyl pectin via recyclable enzymatic de-esterification using pectin methylesterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocolloids, 108, 105786.

    Article  CAS  Google Scholar 

  56. Chi, M.-C., et al. (2021). Magnetic cross-linked enzyme aggregates of a transpeptidase-specialized variant (N450D) of Bacillus licheniformis γ-glutamyl transpeptidase: An efficient and stable biocatalyst for l-theanine synthesis. Catalysts, 11(2), 243.

    Article  CAS  Google Scholar 

  57. Bilal, M., et al. (2021). Development and characterization of cross-linked laccase aggregates (Lac-CLEAs) from Trametes versicolor IBL-04 as ecofriendly biocatalyst for degradation of dye-based environmental pollutants. Environmental Technology & Innovation, 21, 101364.

    Article  CAS  Google Scholar 

  58. Kannan, S., & Marudhamuthu, M. (2019). Development of chitin cross-linked enzyme aggregates of L-methioninase for upgraded activity, permanence and application as efficient therapeutic formulations. International Journal of Biological Macromolecules, 141, 218–231.

    Article  CAS  PubMed  Google Scholar 

  59. Klein, M. P., et al. (2016). Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and beta-D-galactosidase immobilization. Carbohydrate Polymers, 137, 184–190.

    Article  CAS  PubMed  Google Scholar 

  60. Hong, J., et al. (2021). Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. International Journal of Biological Macromolecules, 169, 541–550.

    Article  CAS  PubMed  Google Scholar 

  61. Araya, E., et al. (2019). Design of combined crosslinked enzyme aggregates (combi-CLEAs) of beta-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 288, 102–107.

    Article  CAS  PubMed  Google Scholar 

  62. Guerrero, C., et al. (2020). Comparison of batch and repeated batch operation of lactulose synthesis with cross-linked aggregates of Bacillus circulans β-galactosidase. Process Biochemistry, 94, 224–234.

    Article  CAS  Google Scholar 

  63. López-Serrano, P., Cao, L., Van Rantwijk, F., & Sheldon, R. A. (2002). Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnology Letters, 24, 1379–138.

    Article  Google Scholar 

  64. Ramos, M. D., et al. (2019). Improving the yields and reaction rate in the ethanolysis of soybean oil by using mixtures of lipase CLEAs. Molecules, 24(23), 4392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paitaid, A., & H-Kittikun, A. (2019). Magnetic cross-linked enzyme aggregates of Aspergillus oryzae ST11 lipase using polyacrylonitrile coated magnetic nanoparticles for biodiesel production. Applied Biochemistry and Biotechnology, 190, 1319–1332.

    Article  PubMed  Google Scholar 

  66. Guimaraes, J. R., et al. (2018). Evaluation of strategies to produce highly porous cross-linked aggregates of porcine pancreas lipase with magnetic properties. Molecules, 23(11), 2993.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blanco-Liamero, C., Garcia-Garcia, P., & Javier Senorans, F. (2021). Cross-linked enzyme aggregates and their application in enzymatic pretreatment of microalgae: Comparison between CLEAs and combi-CLEAs. Frontiers In Bioengineering and Biotechnology, 9, 794672.

    Article  Google Scholar 

  68. Rathankumar, A. K., SaiLavanyaa, S., Saikia, K., Gururajan, A., Sivanesan, S., Gosselin, M., Vaidyanathan, V. K., & Cabana, H. (2019). Systemic concocting of cross-linked enzyme aggregates of Candida antarctica lipase B (Novozyme 435) for the biomanufacturing of rhamnolipids. Journal of Surfactants and Detergents, 22, 477.

    Article  CAS  Google Scholar 

  69. Han, Y., Zhang, X., & Zheng, L. (2021). Engineering actively magnetic crosslinked inclusion bodies of Candida antarctica lipase B: An efficient and stable biocatalyst for enzyme-catalyzed reactions. Molecular Catalysis, 504, 111467.

    Article  CAS  Google Scholar 

  70. Lorena, W., Andrés, I., Olga, A., Benevides, C. C. P., Roberto, F., & José, M. G. (2004). Co-aggregation of penicillin G acylase and polyionic polymers: An easy methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules, 5, 852–857.

    Article  Google Scholar 

  71. Galvis, M., et al. (2012). Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 47(12), 2373–2378.

    Article  CAS  Google Scholar 

  72. Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223–6235.

    Article  CAS  PubMed  Google Scholar 

  73. Shah, S., Sharma, A., & Gupta, M. N. (2006). Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Analytical Biochemistry, 351(2), 207–213.

    Article  CAS  PubMed  Google Scholar 

  74. Piligaev, A. V., et al. (2018). Lipid production by microalga Micractinium sp. IC-76 in a flat panel photobioreactor and its transesterification with cross-linked enzyme aggregates of Burkholderia cepacia lipase. Energy Conversion and Management, 156, 1–9.

    Article  CAS  Google Scholar 

  75. Tirunagari, H., et al. (2018). Crosslinked enzyme aggregates (CLEA) of phytase with soymilk proteins. Journal of Biotechnology, 282, 67–69.

    Article  CAS  PubMed  Google Scholar 

  76. Ramos, M. D., et al. (2018). 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnology Progress, 34(4), 910–920.

    Article  CAS  PubMed  Google Scholar 

  77. Alves, N. R., et al. (2021). Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess and Biosystems Engineering, 44(1), 57–66.

    Article  CAS  PubMed  Google Scholar 

  78. Amaral-Fonseca, M., et al. (2018). Preparation of magnetic cross-linked amyloglucosidase aggregates: Solving some activity problems. Catalysts, 8(11), 496.

    Article  Google Scholar 

  79. Wilson, L., et al. (2006). CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 39(4), 750–755.

    Article  CAS  Google Scholar 

  80. Lopez-Serrano, P., Cao, L., van Rantwijk, F., & Sheldon, R. A. (2002). Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnology Letters, 24, 1379–1383.

    Article  CAS  Google Scholar 

  81. De Rose, S. A., et al. (2017). Stabilization of a lipolytic enzyme for commercial application. Catalysts, 7(12), 91.

    Article  Google Scholar 

  82. Almeida, F. L. C., et al. (2021). Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochemistry, 110, 37–51.

    Article  CAS  Google Scholar 

  83. Mehde, A. A. (2019). Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. International Journal of Biological Macromolecules, 131, 721–733.

    Article  CAS  PubMed  Google Scholar 

  84. Bian, H., et al. (2019). Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. International Journal of Biological Macromolecules, 124, 10–16.

    Article  CAS  PubMed  Google Scholar 

  85. Quayson, E., et al. (2020). Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, 134, 110355.

    Article  CAS  Google Scholar 

  86. Del Arco, J., et al. (2021). Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresource Technology, 322, 124547.

    Article  PubMed  Google Scholar 

  87. Wang, A., et al. (2011). A facile technique to prepare cross-linked enzyme aggregates using p-benzoquinone as cross-linking agent. Korean Journal of Chemical Engineering, 28(4), 1090–1095.

    Article  Google Scholar 

  88. Joseph, J. E., et al. (2021). Soluble and cross-linked aggregated forms of alpha-galactosidase from Vigna mungo immobilized on magnetic nanocomposites: Improved stability and reusability. Applied Biochemistry and Biotechnology, 193(1), 238–256.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5(8), 4503–4513.

    Article  Google Scholar 

  90. Nguyen, V. D., et al. (2019). Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 84, 30–38.

    Article  CAS  Google Scholar 

  91. Lucena, G. N., et al. (2020). Synthesis and characterization of magnetic cross-linked enzyme aggregate and its evaluation of the alternating magnetic field (AMF) effects in the catalytic activity. Journal of Magnetism and Magnetic Materials, 516, 167326.

    Article  CAS  Google Scholar 

  92. Primožič, M., et al. (2020). Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio)degradation. Journal of Cleaner Production, 275, 124121.

    Article  Google Scholar 

  93. Talekar, S., et al. (2012). Porous cross linked enzyme aggregates (p-CLEAs) of Saccharomyces cerevisiae invertase. Catalysis Science & Technology, 2(8), 1575.

    Article  CAS  Google Scholar 

  94. Talekar, S., Waingade, S., Gaikwad, V., Patil, S., & Nagavekar, N. (2012). preparation-and-characterization-of-cross-linked-enzyme-aggregates-cleas-of-bacillus-amyloliquefac. Biochem Tech, 3(4), 349–353.

    CAS  Google Scholar 

  95. George, J., et al. (2022). Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. Chemosphere, 313, 137612.

    Article  PubMed  Google Scholar 

  96. Nawawi, N. N., & Hashim, Z. (2020). Entrapment of porous cross-linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1 into calcium alginate for maltooligosaccharides synthesis. International Journal of Biological Macromolecules, 150, 80–89.

    Article  CAS  PubMed  Google Scholar 

  97. Sheldon, R. A. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92(3), 467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ozacar, M., et al. (2019). The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids and Surfaces. B, Biointerfaces, 173, 58–68.

    Article  CAS  PubMed  Google Scholar 

  99. Xu, M. Q., et al. (2020). Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD(+) regeneration. International Journal of Biological Macromolecules, 144, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  100. Torabizadeh, H., & Montazeri, E. (2020). Nano co-immobilization of alpha-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydrate Research, 488, 107904.

    Article  CAS  PubMed  Google Scholar 

  101. Li, X. Y., et al. (2022). Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for L-tagatose synthesis via in situ cofactor regeneration. Bioprocess and Biosystems Engineering, 45(2), 353–364.

    Article  CAS  PubMed  Google Scholar 

  102. Jailani, N., et al. (2022). Cross-linked cyclodextrin glucanotransferase aggregates from Bacillus lehensis G1 for cyclodextrin production: Molecular modeling, developmental, physicochemical, kinetic and thermodynamic properties. International Journal of Biological Macromolecules, 213, 516–533.

    Article  CAS  PubMed  Google Scholar 

  103. Jaafar, N. R., et al. (2022). Protein surface engineering and interaction studies of maltogenic amylase towards improved enzyme immobilisation. International Journal of Biological Macromolecules, 213, 70–82.

    Article  CAS  PubMed  Google Scholar 

  104. Calvaresi, M., Hoefinger, S., & Zerbetto, F. (2012). Probing the structure of lysozyme-carbon-nanotube hybrids with molecular dynamics. Chemistry, 18(14), 4308–4313.

    Article  CAS  PubMed  Google Scholar 

  105. Naqvi, A. A. T., et al. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768.

    Article  PubMed  Google Scholar 

  106. Li, C., et al. (2021). A possible mechanism of graphene oxide to enhance thermostability of D-psicose 3-epimerase revealed by molecular dynamics simulations. International Journal of Molecular Sciences, 22(19), 10813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guterres, H., et al. (2021). Ligand-binding-site refinement to generate reliable holo protein structure conformations from apo structures. Journal of Chemical Information and Modeling, 61(1), 535–546.

    Article  CAS  PubMed  Google Scholar 

  108. Abdul Wahab, M. K. H., et al. (2019). Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochemistry, 86, 40–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the helpful comments and suggestions from the Biochemistry and Biotechnology Laboratory colleagues and the Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor.

Funding

This work was supported by the UTM High Impact Research Grant (grant number Q.J130000.2454.08G45).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. The idea of this work, the literature research, and the data analysis were done by Oumaima Maroua Bouguerra and Roswanira Abdul Wahab. All authors have contributed to amending and improving the draft by commenting on previous manuscript versions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Roswanira Abdul Wahab or Mohd Khalizan Sabullah.

Ethics declarations

Ethics Approval

This is a review research study, which does not require any ethical approval.

Consent to Participate

No consent to participate has been used in this study.

Consent for Publication

No consent to publish the information was used in this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguerra, O.M., Wahab, R.A., Huyop, F. et al. An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04809-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04809-y

Keywords

Navigation