Skip to main content
Log in

Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for l-tagatose synthesis via in situ cofactor regeneration

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for l-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g−1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of l-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to l-tagatose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used or analyzed in this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Roy S, Chikkerur J, Roy SC et al (2018) Tagatose as a potential nutraceutical: production, properties, biological roles, and applications. J Food Sci 83:2699–2709. https://doi.org/10.1111/1750-3841.14358

    Article  CAS  PubMed  Google Scholar 

  2. Oh D-K (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8. https://doi.org/10.1007/s00253-007-0981-1

    Article  CAS  PubMed  Google Scholar 

  3. Roh HJ, Kim P, Park YC et al (2000) Bioconversion of D-galactose into D-tagatose by expression of l-arabinose isomerase. Biotechnol Appl Biochem 31:1–4. https://doi.org/10.1042/ba19990065

    Article  CAS  PubMed  Google Scholar 

  4. Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L (2018) D-tagatose is a promising sweetener to control glycaemia: a new functional food. BioMed Res Int 2018:1–7. https://doi.org/10.1155/2018/8718053

    Article  CAS  Google Scholar 

  5. Espinosa I, Fogelfeld L (2010) Tagatose: from a sweetener to a new diabetic medication? Exp Opin Investig Drugs 19:285–294. https://doi.org/10.1517/13543780903501521

    Article  CAS  Google Scholar 

  6. Patel SKS, Otari SV, Chan Kang Y, Lee J-K (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in l-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/C6RA24404A

    Article  CAS  Google Scholar 

  7. Mei W, Wang L, Zang Y et al (2016) Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production. BMC Biotechnol 16:55. https://doi.org/10.1186/s12896-016-0286-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soetedjo JNM, van de Bovenkamp HH, Deuss PJ et al (2017) Biobased furanics: kinetic studies on the acid catalyzed decomposition of 2-hydroxyacetyl furan in water using Brönsted acid catalysts. ACS Sustain Chem Eng 5:3993–4001. https://doi.org/10.1021/acssuschemeng.6b03198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nath A, Verasztó B, Basak S et al (2015) Synthesis of lactose-derived nutraceuticals from dairy waste whey—a review. Food Bioprocess Technol 9:16–48. https://doi.org/10.1007/s11947-015-1572-2

    Article  CAS  Google Scholar 

  10. Drabo P, Delidovich I (2018) Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catal Commun 107:24–28. https://doi.org/10.1016/j.catcom.2018.01.011

    Article  CAS  Google Scholar 

  11. Kim P (2004) Current studies on biological tagatose production using l-arabinose isomerase: a review and future perspective. Appl Microbiol Biotechnol 65:243–249. https://doi.org/10.1007/s00253-004-1665-8

    Article  CAS  PubMed  Google Scholar 

  12. Kohlmeier MG, Bailey-Elkin BA, Mark BL et al (2021) Characterization of the sorbitol dehydrogenase SmoS from Sinorhizobium meliloti 1021. Acta Crystallogr Sect D 77:380–390. https://doi.org/10.1107/S2059798321001017

    Article  CAS  Google Scholar 

  13. Wang X, Yiu H (2016) Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catal 6:1880–1886. https://doi.org/10.1021/acscatal.5b02820

    Article  CAS  Google Scholar 

  14. Hwang ET, Lee S (2019) Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal 9:4402–4425. https://doi.org/10.1021/acscatal.8b04921

    Article  CAS  Google Scholar 

  15. Wang X, Saba T, Yiu HHP et al (2017) Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2:621–654. https://doi.org/10.1016/j.chempr.2017.04.009

    Article  CAS  Google Scholar 

  16. Demir AS, Talpur FN, Betul Sopaci S et al (2011) Selective oxidation and reduction reactions with cofactor regeneration mediated by galactitol-, lactate-, and formate dehydrogenases immobilized on magnetic nanoparticles. J Biotechnol 152:176–183. https://doi.org/10.1016/j.jbiotec.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. https://doi.org/10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  18. Cui JD, Jia SR (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 35:15–28. https://doi.org/10.3109/07388551.2013.795516

    Article  CAS  PubMed  Google Scholar 

  19. Cui JD, Cui LL, Zhang SP et al (2014) Hybrid magnetic cross-linked enzyme aggregates of phenylalanine ammonia lyase from rhodotorula glutinis. PLoS ONE 9:e97221. https://doi.org/10.1371/journal.pone.0097221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226. https://doi.org/10.1016/j.cbpa.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  21. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394. https://doi.org/10.1016/s0958-1669(03)00096-x

    Article  CAS  PubMed  Google Scholar 

  22. Talekar S, Pandharbale A, Ladole M et al (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275. https://doi.org/10.1016/j.biortech.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  23. Ramos MD, Miranda LP, Giordano RLC et al (2018) 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnol Prog 34:910–920. https://doi.org/10.1002/btpr.2636

    Article  CAS  PubMed  Google Scholar 

  24. Cui J, Cui L, Jia S et al (2016) Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for the epoxidation of oleic acid. J Agric Food Chem 64:7179–7187. https://doi.org/10.1021/acs.jafc.6b01939

    Article  CAS  PubMed  Google Scholar 

  25. Cui J, Zhang S, Sun LM (2012) Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of l-phenylalanine. Appl Biochem Biotechnol 167:835–844. https://doi.org/10.1007/s12010-012-9738-0

    Article  CAS  PubMed  Google Scholar 

  26. Cui J, Zhao Y, Feng Y et al (2017) Encapsulation of spherical cross-linked phenylalanine ammonia lyase aggregates in mesoporous biosilica. J Agric Food Chem 65:618–625. https://doi.org/10.1021/acs.jafc.6b05003

    Article  CAS  PubMed  Google Scholar 

  27. Cui J, Zhao Y, Tan Z et al (2017) Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating. Int J Biol Macromol 98:887–896. https://doi.org/10.1016/j.ijbiomac.2017.02.059

    Article  CAS  PubMed  Google Scholar 

  28. Xu M-Q, Li F-L, Yu W-Q et al (2020) Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD+ regeneration. Int J Biol Macromol 144:1013–1021. https://doi.org/10.1016/j.ijbiomac.2019.09.178

    Article  CAS  PubMed  Google Scholar 

  29. Freimund S, Huwig A, Giffhorn F et al (1996) Convenient chemo-enzymatic synthesis of d-tagatose. J Carbohydr Chem 15:115–120. https://doi.org/10.1080/07328309608005430

    Article  CAS  Google Scholar 

  30. Su W-B, Li F-L, Li X-Y et al (2021) Using galactitol dehydrogenase coupled with water-forming NADH oxidase for efficient enzymatic synthesis of L-tagatose. New Biotechnol 62:18–25. https://doi.org/10.1016/j.nbt.2021.01.003

    Article  CAS  Google Scholar 

  31. Li F-L, Shi Y, Zhang J-X et al (2018) Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175. Int J Biol Macromol 113:1073–1079. https://doi.org/10.1016/j.ijbiomac.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang M-Y, Jiang X-P, Ling X-M et al (2018) Immobilization of glycerol dehydrogenase and NADH oxidase for enzymatic synthesis of 1,3-dihydroxyacetone with in situ cofactor regeneration. J Chem Technol Biotechnol 93:2351–2358. https://doi.org/10.1002/jctb.5579

    Article  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  34. Lee D-W, Jang H-J, Choe E-A et al (2004) Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol 70:1397–1404. https://doi.org/10.1128/aem.70.3.1397-1404.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mezzenga R, Jung J-M, Adamcik J (2010) Effects of charge double layer and colloidal aggregation on the isotropic-nematic transition of protein fibers in water. Langmuir 26:10401–10405. https://doi.org/10.1021/la101636r

    Article  CAS  PubMed  Google Scholar 

  36. Pchelintsev NA, Youshko MI, Švedas VK (2009) Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J Mol Catal B Enzym 56:202–207. https://doi.org/10.1016/j.molcatb.2008.05.006

    Article  CAS  Google Scholar 

  37. Aytar B, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43:125–131. https://doi.org/10.1016/j.procbio.2007.11.001

    Article  CAS  Google Scholar 

  38. Nadar S, Muley A, Ladole M et al (2015) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78. https://doi.org/10.1016/j.ijbiomac.2015.11.082

    Article  CAS  PubMed  Google Scholar 

  39. Xu M-Q, Wang S-S, Li L-N et al (2018) Combined cross-linked enzyme aggregates as biocatalysts. Catalysts 8:460. https://doi.org/10.3390/catal8100460

    Article  CAS  Google Scholar 

  40. Talekar S, Joshi A, Joshi G et al (2013) Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv 3:12485–12511. https://doi.org/10.1039/C3RA40818C

    Article  CAS  Google Scholar 

  41. Sheldon RA (2011) Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev 15:213–223. https://doi.org/10.1021/op100289f

    Article  CAS  Google Scholar 

  42. Mateo C, Palomo JM, van Langen LM et al (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276. https://doi.org/10.1002/bit.20033

    Article  CAS  PubMed  Google Scholar 

  43. Arana-Peña S, Carballares D, Morellon-Sterlling R et al (2020) Enzyme co-immobilization: always the biocatalyst designers’ choice…or not? Biotechnol Adv 51:107584. https://doi.org/10.1016/j.biotechadv.2020.107584

    Article  CAS  PubMed  Google Scholar 

  44. Benítez-Mateos A, Nidetzky B, Bolivar J et al (2017) Single-particle studies to advance the characterization of heterogeneous biocatalysts. ChemCatChem 10:654–665. https://doi.org/10.1002/cctc.201701590

    Article  CAS  Google Scholar 

  45. Wang M, Jia C, Qi W et al (2011) Porous-CLEAs of papain: application to enzymatic hydrolysis of macromolecules. Bioresour Technol 102:3541–3545. https://doi.org/10.1016/j.biortech.2010.08.120

    Article  CAS  PubMed  Google Scholar 

  46. Xu D-Y, Chen J-Y, Yang Z (2012) Use of cross-linked tyrosinase aggregates as catalyst for synthesis of l-DOPA. Biochem Eng J 63:88–94. https://doi.org/10.1016/j.bej.2011.11.009

    Article  CAS  Google Scholar 

  47. Hanamoto JH, Dupuis P, El-Sayed MA (1984) On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. Proc Natl Acad Sci USA 81:7083–7087. https://doi.org/10.1073/pnas.81.22.7083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wondrak EM, Louis JM, Oroszlan S (1991) The effect of salt on the Michaelis Menten constant of the HIV-1 protease correlates with the Hofmeister series. FEBS Lett 280:344–346. https://doi.org/10.1016/0014-5793(91)80327-Y

    Article  CAS  PubMed  Google Scholar 

  49. Zhen Q, Wang M, Qi W et al (2013) Preparation of β-mannanase CLEAs using macromolecular cross-linkers. Catal Sci Technol 3:1937–1941. https://doi.org/10.1039/C3CY20886A

    Article  CAS  Google Scholar 

  50. Liu Y, Feng Y, Wang L et al (2019) Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor. ACS Catal 9:1883–1887. https://doi.org/10.1021/acscatal.8b04822

    Article  CAS  Google Scholar 

  51. Goetze D, Foletto EF, da Silva HB et al (2017) Effect of feather meal as proteic feeder on combi-CLEAs preparation for grape juice clarification. Process Biochem 62:122–127. https://doi.org/10.1016/j.procbio.2017.07.015

    Article  CAS  Google Scholar 

  52. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43:1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004

    Article  CAS  Google Scholar 

  53. Rollini M, Manzoni M (2005) Bioconversion of d-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochem 40:437–444. https://doi.org/10.1016/j.procbio.2004.01.028

    Article  CAS  Google Scholar 

  54. Jørgensen F, Hansen O, Stougaard P (2004) Enzymatic conversion of d-galactose to d-tagatose: heterologous expression and characterisation of a thermostable l-arabinose isomerase from Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 64:816–822. https://doi.org/10.1007/s00253-004-1578-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciated the financial support from the Natural Science Foundation of Guangxi Province (No. 2019GXNSFAA185059).

Author information

Authors and Affiliations

Authors

Contributions

Design of experiments: Y-WZ, X-YL, and M-QX; performance of experiment and drawing of graphs: M-QX, X-YL, and HL; manuscript draft and compilation: X-YL and Y-WZ; correction and revision of the manuscript: Y-WZ, QZ, and JG.

Corresponding author

Correspondence to Ye-Wang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

The authors are agreeable to the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Xu, MQ., Liu, H. et al. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for l-tagatose synthesis via in situ cofactor regeneration. Bioprocess Biosyst Eng 45, 353–364 (2022). https://doi.org/10.1007/s00449-021-02665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02665-w

Keywords

Navigation