Skip to main content
Log in

Increased Synthesis of a Magnesium Transporter MgtA During Recombinant Autotransporter Expression in Escherichia coli

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Overproduction of the membrane proteins in Escherichia coli cells is a common approach to obtain sufficient material for their functional and structural studies. However, the efficiency of this process can be limited by toxic effects which decrease the viability of the host and lead to low yield of the product. During the expression of the esterase autotransporter AT877 from Psychrobacter cryohalolentis K5T, we observed significant growth inhibition of the C41(DE3) cells in comparison with the same cells producing other recombinant proteins. Induction of AT877 synthesis also resulted in the elevated expression of a magnesium transporter MgtA and decreased ATP content of the cells. To characterize the response to overexpression of the autotransporter in bacterial cells, we performed a comparative analysis of their proteomic profile by mass spectrometry. According to the obtained data, E. coli cells which synthesize AT877 experience complex stress condition presumably associated with secretion apparatus overloading and improper localization of the recombinant protein. Several response pathways were shown to be activated by AT877 overproduction including Cpx, PhoP/PhoQ, Psp, and σE The obtained results open new opportunities for optimization of the recombinant membrane protein expression in E. coli for structural studies and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Link, A. J., & Georgiou, G. (2007). Advances and challenges in membrane protein expression. AIChE Journal, 53, 752–756.

    Article  CAS  Google Scholar 

  2. Snijder, H. J., & Hakulinen, J. (2016). Membrane protein production in E. coli for applications in drug discovery. Advances in Experimental Medicine and Biology, 896, 59–77.

    Article  CAS  PubMed  Google Scholar 

  3. Hattab, G., Warschawski, D. E., Moncoq, K., & Miroux, B. (2015). Escherichia coli as host for membrane protein structure determination: A global analysis. Science and Reports, 5, 12097–12097.

    Article  Google Scholar 

  4. Wagner, S., Baars, L., Ytterberg, A. J., Klussmeier, A., Wagner, C. S., Nord, O., Nygren, P. -Å., van Wijk, K. J., & de Gier, J.-W. (2007). Consequences of membrane protein overexpression in Escherichia coli. Molecular & Cellular Proteomics, 6, 1527–1550.

    Article  CAS  Google Scholar 

  5. Klepsch, M. M., Persson, J. O., & de Gier, J.-W.L. (2011). Consequences of the overexpression of a eukaryotic membrane protein, the human KDEL receptor, in Escherichia coli. Journal of Molecular Biology, 407, 532–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guisbert, E., Yura, T., Rhodius, V. A., & Gross, C. A. (2008). Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiology and Molecular Biology Reviews, 72, 545–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo, M. S., & Gross, C. A. (2014). Stress-induced remodeling of the bacterial proteome. Current Biology, 24, R424–R434.

    Article  CAS  PubMed  Google Scholar 

  8. Guisbert, E., Herman, C., Lu, C. Z., & Gross, C. A. (2004). A chaperone network controls the heat shock response in E. coli. Gene and Development, 18, 2812–2821.

    Article  CAS  Google Scholar 

  9. Lim, B., Miyazaki, R., Neher, S., Siegele, D. A., Ito, K., Walter, P., Akiyama, Y., Yura, T., & Gross, C. A. (2013). Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biology, 11, e1001735.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Alba, B. M., & Gross, C. A. (2004). Regulation of the Escherichia coli σE-dependent envelope stress response. Molecular Microbiology, 52, 613–619.

    Article  CAS  PubMed  Google Scholar 

  12. Rhodius, V. A., Suh, W. C., Nonaka, G., West, J., & Gross, C. A. (2005). Conserved and variable functions of the σE stress response in related genomes. PLoS Biology, 4, e2.

    Article  PubMed Central  CAS  Google Scholar 

  13. Dartigalongue, C., Missiakas, D., & Raina, S. (2001). Characterization of the Escherichia coli σE regulon. Journal of Biological Chemistry, 276, 20866–20875.

    Article  CAS  PubMed  Google Scholar 

  14. Hayden, J. D., & Ades, S. E. (2008). The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PloS One, 3, e1573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Randi L. Guest, T.L.R. (2016). The Cpx inner membrane stress response. In Stress and environmental regulation of gene expression and adaptation in bacteria, F.J.d. Bruijn, ed., pp. 1015–1024.

  16. Hews, C. L., Cho, T., Rowley, G., & Raivio, T. L. (2019). Maintaining integrity under stress: Envelope stress response regulation of pathogenesis in Gram-negative bacteria. Frontiers in Cellular and Infection Microbiology, 9.

  17. Mitchell, A. M., & Silhavy, T. J. (2019). Envelope stress responses: Balancing damage repair and toxicity. Nature Reviews Microbiology, 17, 417–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delhaye, A., Collet, J.-F., & Laloux, G. (2019). A fly on the wall: How stress response systems can sense and respond to damage to peptidoglycan. Frontiers in Cellular and Infection Microbiology, 9, 380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miroux, B., & Walker, J. E. (1996). Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology, 260, 289–298.

    Article  CAS  PubMed  Google Scholar 

  20. Skretas, G., & Georgiou, G. (2010). Simple genetic selection protocol for isolation of overexpressed genes that enhance accumulation of membrane-integrated human G protein-coupled receptors in Escherichia coli. Applied and Environmental Microbiology, 76, 5852–5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skretas, G., Makino, T., Varadarajan, N., Pogson, M., & Georgiou, G. (2012). Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli. Metabolic Engineering, 14, 591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gul, N., Linares, D. M., Ho, F. Y., & Poolman, B. (2014). Evolved Escherichia coli strains for amplified, functional expression of membrane proteins. Journal of Molecular Biology, 426, 136–149.

    Article  CAS  PubMed  Google Scholar 

  23. Wagner, S., Klepsch, M. M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., Högbom, M., Van Wijk, K. J., Slotboom, D. J., & Persson, J. O. (2008). Tuning Escherichia coli for membrane protein overexpression. Proceedings National Academy of Sciences United States of America, 105, 14371–14376.

    Article  CAS  Google Scholar 

  24. Sun, F., Pang, X., Xie, T., Zhai, Y., Wang, G., & Sun, F. (2015). BrkAutoDisplay: Functional display of multiple exogenous proteins on the surface of Escherichia coli by using BrkA autotransporter. Microbial Cell Factories, 14, 1.

    Article  CAS  Google Scholar 

  25. Link, A. J., Skretas, G., Strauch, E. M., Chari, N. S., & Georgiou, G. (2008). Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Science, 17, 1857–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dautin, N., & Bernstein, H. D. (2007). Protein secretion in Gram-negative bacteria via the autotransporter pathway. Annual Review of Microbiology, 61, 89–112.

    Article  CAS  PubMed  Google Scholar 

  27. Grijpstra, J., Arenas, J., Rutten, L., & Tommassen, J. (2013). Autotransporter secretion: Varying on a theme. Research in Microbiology, 164, 562–582.

    Article  CAS  PubMed  Google Scholar 

  28. Nicolay, T., Vanderleyden, J., & Spaepen, S. (2015). Autotransporter-based cell surface display in Gram-negative bacteria. Critical Reviews in Microbiology, 41, 109–123.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, K. H., Aulakh, S., & Paetzel, M. (2012). The bacterial outer membrane beta-barrel assembly machinery. Protein Science, 21, 751–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selkrig, J., Leyton, D. L., Webb, C. T., & Lithgow, T. (2014). Assembly of β-barrel proteins into bacterial outer membranes. Biochimica et Biophysica Acta-Molecular Cell Research, 1843, 1542–1550.

    Article  CAS  Google Scholar 

  31. Van Ulsen, P., Zinner, K. M., Jong, W. S., & Luirink, J. (2018). On display: Autotransporter secretion and application. FEMS Microbiology Letters, 365, fny165.

    Google Scholar 

  32. Jose, J., Maas, R. M., & Teese, M. G. (2012). Autodisplay of enzymes–Molecular basis and perspectives. Journal of Biotechnology, 161, 92–103.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S. Y., Choi, J. H., & Xu, Z. (2003). Microbial cell-surface display. Trends in Biotechnology, 21, 45–52.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, C. H., Mulchandani, A., & Chen, W. (2008). Versatile microbial surface-display for environmental remediation and biofuels production. Trends in Microbiology, 16, 181–188.

    Article  CAS  PubMed  Google Scholar 

  35. Petrovskaya, L., Novototskaya-Vlasova, K., Kryukova, E., Rivkina, E., Dolgikh, D., & Kirpichnikov, M. (2015). Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5T. Extremophiles, 19, 161–170.

    Article  CAS  PubMed  Google Scholar 

  36. Petrovskaya, L., Zlobinov, A., Shingarova, L., Boldyreva, E., Gapizov, S. S., Novototskaya-Vlasova, K., Rivkina, E., Dolgikh, D., & Kirpichnikov, M. (2018). Fusion with the cold-active esterase facilitates autotransporter-based surface display of the 10th human fibronectin domain in Escherichia coli. Extremophiles, 22, 141–150.

    Article  CAS  PubMed  Google Scholar 

  37. Petrovskaya, L. E., Novototskaya-Vlasova, K. A., Gapizov, S. S., Spirina, E. V., Durdenko, E. V., & Rivkina, E. M. (2017). New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered, 8, 420–423.

    Article  CAS  PubMed  Google Scholar 

  38. Petrovskaya, L. E., Lukashev, E. P., Chupin, V. V., Sychev, S. V., Lyukmanova, E. N., Kryukova, E. A., Ziganshin, R. H., Spirina, E. V., Rivkina, E. M., Khatypov, R. A., et al. (2010). Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Letters, 584, 4193–4196.

    Article  CAS  PubMed  Google Scholar 

  39. Ugarova, N. N., Lomakina, G. Y., Modestova, Y., Chernikov, S. V., Vinokurova, N. V., Otrashevskaya, E. V., & Gorbachev, V. Y. (2016). A simplified ATP method for the rapid control of cell viability in a freeze-dried BCG vaccine. Journal of Microbiological Methods, 130, 48–53.

    Article  CAS  PubMed  Google Scholar 

  40. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856.

    Article  CAS  PubMed  Google Scholar 

  41. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N., & Mann, M. (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nature Methods, 11, 319.

    Article  CAS  PubMed  Google Scholar 

  42. Kovalchuk, S. I., Jensen, O. N., & Rogowska-Wrzesinska, A. (2019). FlashPack: Fast and simple preparation of ultrahigh-performance capillary columns for LC-MS. Molecular & Cellular Proteomics, 18, 383–390.

    Article  CAS  Google Scholar 

  43. Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11, 2301.

    Article  CAS  PubMed  Google Scholar 

  44. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote) omics data. Nature Methods, 13, 731.

    Article  CAS  PubMed  Google Scholar 

  45. Kato, A., Tanabe, H., & Utsumi, R. (1999). Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: Identification of extracellular Mg2+-responsive promoters. Journal of Bacteriology, 181, 5516–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Groisman, E. A., Hollands, K., Kriner, M. A., Lee, E.-J., Park, S.-Y., & Pontes, M. H. (2013). Bacterial Mg2+ homeostasis, transport, and virulence. Annual Review of Genetics, 47, 625–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Minagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., Mori, H., Ishihama, A., & Utsumi, R. (2003). Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. Journal of Bacteriology, 185, 3696–3702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Monsieurs, P., De Keersmaecker, S., Navarre, W. W., Bader, M. W., De Smet, F., McClelland, M., Fang, F. C., De Moor, B., Vanderleyden, J., & Marchal, K. (2005). Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. Journal of Molecular Evolution, 60, 462–474.

    Article  CAS  PubMed  Google Scholar 

  49. Pontes, M. H., & Groisman, E. A. (2018). Protein synthesis controls phosphate homeostasis. Gene Development, 32, 79–92.

    Article  CAS  Google Scholar 

  50. Hsieh, Y.-J., & Wanner, B. L. (2010). Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology, 13, 198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Surmann, K., Ćudić, E., Hammer, E., & Hunke, S. (2016). Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli. Microbiology Open, 5, 582–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujita, Y., Matsuoka, H., & Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 66, 829–839.

    Article  CAS  PubMed  Google Scholar 

  53. Raivio, T. L., Leblanc, S. K. D., & Price, N. L. (2013). The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. Journal of Bacteriology, 195, 2755–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z., & Gross, C. A. (2002). DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Gene Development, 16, 2156–2168.

    Article  CAS  Google Scholar 

  55. Soto-Rodríguez, J., & Baneyx, F. (2019). Role of the signal sequence in proteorhodopsin biogenesis in E. coli. Biotechnology and Bioengineering, 116, 912–918.

    Article  PubMed  CAS  Google Scholar 

  56. Maguire, M. E. (2006). Magnesium transporters: Properties, regulation and structure. Frontiers in Bioscience, 11, 3149–3163.

    Article  CAS  PubMed  Google Scholar 

  57. Cromie, M. J., Shi, Y., Latifi, T., & Groisman, E. A. (2006). An RNA sensor for intracellular Mg2+. Cell, 125, 71–84.

    Article  CAS  PubMed  Google Scholar 

  58. Lippa, A. M., & Goulian, M. (2012). Perturbation of the oxidizing environment of the periplasm stimulates the PhoQ/PhoP system in Escherichia coli. Journal of Bacteriology, 194, 1457–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alteri, C. J., Lindner, J. R., Reiss, D. J., Smith, S. N., & Mobley, H. L. T. (2011). The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Molecular Microbiology, 82, 145–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pontes, M. H., Yeom, J., & Groisman, E. A. (2016). Reducing ribosome biosynthesis promotes translation during low Mg2+ stress. Molecular Cell, 64, 480–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grabowicz, M., Koren, D., & Silhavy, T. J. (2016). The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. MBio, 7.

  62. Gubellini, F., Verdon, G., Karpowich, N. K., Luff, J. D., Boel, G., Gauthier, N., Handelman, S. K., Ades, S. E., & Hunt, J. F. (2011). Physiological response to membrane protein overexpression in E. coli. Molecular & Cellular Proteomics, 10, M111. 007930.

    Article  CAS  Google Scholar 

  63. Hoffmann, F., & Rinas, U. (2004). Stress induced by recombinant protein production in Escherichia coli. Advances in Biochemical Engineering/Biotechnology, 89, 73–92.

    Article  CAS  PubMed  Google Scholar 

  64. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399–1408.

    Article  CAS  PubMed  Google Scholar 

  65. Markossian, K., & Kurganov, B. (2004). Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry (Moscow), 69, 971–984.

    Article  CAS  Google Scholar 

  66. Sabate, R., de Groot, N. S., & Ventura, S. (2010). Protein folding and aggregation in bacteria. Cellular and Molecular Life Sciences, 67, 2695–2715.

    Article  CAS  PubMed  Google Scholar 

  67. Montero, I. G., Dolata, K. M., Schlüter, R., Malherbe, G., Sievers, S., Zühlke, D., Sura, T., Dave, E., Riedel, K., & Robinson, C. (2019). Comparative proteome analysis in an Escherichia coli CyDisCo strain identifies stress responses related to protein production, oxidative stress and accumulation of misfolded protein. Microbial Cell Factories, 18, 1–15.

    Google Scholar 

  68. Braselmann, E., Chaney, J. L., Champion, M. M., & Clark, P. L. (2016). DegP chaperone suppresses toxic inner membrane translocation intermediates. PLoS One, 11, e0162922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gerken, H., Leiser, O. P., Bennion, D., & Misra, R. (2010). Involvement and necessity of the Cpx regulon in the event of aberrant beta-barrel outer membrane protein assembly. Molecular Microbiology, 75, 1033–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., Stumpf, M. P., & Buck, M. (2010). Managing membrane stress: The phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiology Reviews, 34, 797–827.

    Article  CAS  PubMed  Google Scholar 

  71. Testerman, T. L., Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Libby, S. J., & Fang, F. C. (2002). The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Molecular Microbiology, 43, 771–782.

    Article  CAS  PubMed  Google Scholar 

  72. Dai, Y., & Outten, F. W. (2012). The E. coli SufS–SufE sulfur transfer system is more resistant to oxidative stress than IscS–IscU. FEBS Letters, 586, 4016–4022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The MS experiments were carried out using the equipment of the Shared-Access Equipment Centre “Bioorganika” of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.

Funding

The work was funded by the Ministry of Science and Higher Education of Russia, Research Project N075-15–2020-795, local identifier 13.1902.21.0027.

Author information

Authors and Affiliations

Authors

Contributions

L. E. Petrovskaya and R. H. Ziganshin designed the research and analyzed data. L. E. Petrovskaya, R. H. Ziganshin, E. A. Kryukova, L. N. Shingarova, A. V. Zlobinov, and S. Sh. Gapizov carried out the experiments. V. A. Mironov and G. Yu. Lomakina advised and supervised measurements. Project administration, L. E. Petrovskaya, D. A. Dolgikh, and M. P. Kirpichnikov. All authors interpreted data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lada E. Petrovskaya.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovskaya, L.E., Ziganshin, R.H., Kryukova, E.A. et al. Increased Synthesis of a Magnesium Transporter MgtA During Recombinant Autotransporter Expression in Escherichia coli. Appl Biochem Biotechnol 193, 3672–3703 (2021). https://doi.org/10.1007/s12010-021-03634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03634-5

Keywords

Navigation