Skip to main content
Log in

Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (γ-PGA) is an anionic polymer with wide-ranging applications in the areas of medicine, light chemical industry, wastewater treatment, and agriculture. However, the production cost of γ-PGA is high for the requirement of adding the expensive precursor L-glutamic acid during fermentation, which hinders its widespread application. In this study, in order to improve γ-PGA yield, central carbon metabolism was engineered to enhance the carbon flux of tricarboxylic acid (TCA) cycle and glutamic acid synthesis in a γ-PGA production strain Bacillus licheniformis WX-02. Firstly, pyruvate dehydrogenase (PdhABCD) and citrate synthase (CitA) were overexpressed to strengthen the flux of pyruvate into TCA cycle, resulting in 34.93% and 11.14% increase of γ-PGA yield in B. licheniformis WX-02, respectively. Secondly, the carbon flux to glyoxylate shunt was rewired via varying the expression of isocitrate lyase (AceA), and a 23.24% increase of γ-PGA yield was obtained in AceA down-regulated strain WXPbacAaceBA. Thirdly, deletion of pyruvate formate-lyase gene pflB led to a 30.70% increase of γ-PGA yield. Finally, combinatorial metabolic engineering was applied, and γ-PGA titer was enhanced to 12.02 g/L via overexpressing pdhABCD and citA, repressing aceA, and deleting pflB, with a 69.30% improvement compared to WX-02. Collectively, metabolic engineering of central carbon metabolism is an effective strategy for enhanced γ-PGA production in B. licheniformis, and this research provided a promising strain for industrial production of γ-PGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sirisansaneeyakul, S., Cao, M., Kongklom, N., Chuensangjun, C., Shi, Z., & Chisti, Y. (2017). Microbial production of poly-gamma-glutamic acid. World Journal of Microbiology & Biotechnology, 33(9), 173.

    Article  CAS  Google Scholar 

  2. Xu, G., Zha, J., Cheng, H., Ibrahim, M. H. A., Yang, F., Dalton, H., Cao, R., Zhu, Y., Fang, J., Chi, K., Zheng, P., Zhang, X., Shi, J., Xu, Z., Gross, R. A., & Koffas, M. A. G. (2019). Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-gamma-glutamic acid. Metabolic Engineering, 56, 39–49.

    Article  CAS  PubMed  Google Scholar 

  3. Zhan, Y., Sheng, B., Wang, H., Shi, J., Cai, D., Yi, L., Yang, S., Wen, Z., Ma, X., & Chen, S. (2018). Rewiring glycerol metabolism for enhanced production of poly-gamma-glutamic acid in Bacillus licheniformis. Biotechnology for Biofuels, 11, 306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai, D., He, P., Lu, X., Zhu, C., Zhu, J., Zhan, Y., Wang, Q., Wen, Z., & Chen, S. (2017). A novel approach to improve poly-gamma-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Scientific Reports, 7, 43404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, W., He, Y., Gao, W., Feng, J., Cao, M., Yang, C., Song, C., & Wang, S. (2015). Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3. Journal of Industrial Microbiology & Biotechnology, 42(2), 297–305.

    Article  CAS  Google Scholar 

  6. Feng, J., Quan, Y., Gu, Y., Liu, F., Huang, X., Shen, H., Dang, Y., Cao, M., Gao, W., Lu, X., Wang, Y., Song, C., & Wang, S. (2017). Enhancing poly-gamma-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microbial Cell Factories, 16(1), 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Qin, N., Li, L., Ji, X., Li, X., Zhang, Y., Larsson, C., Chen, Y., Nielsen, J., & Liu, Z. (2020). Rewiring central carbon metabolism ensures increased provision of Acetyl-CoA and NADPH required for 3-OH-propionic acid production. Acs Synthetic Biology, 9(12), 3236–3244.

    Article  CAS  PubMed  Google Scholar 

  8. Kopp, D., & Sunna, A. (2020). Alternative carbohydrate pathways - enzymes, functions and engineering. Critical Reviews in Biotechnology, 40(7), 895–912.

    Article  CAS  PubMed  Google Scholar 

  9. Doi, S., Komatsu, M., & Ikeda, H. (2020). Modifications to central carbon metabolism in an engineered Streptomyces host to enhance secondary metabolite production. Journal of Bioscience and Bioengineering, 130(6), 563–570.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, H., Song, R., Liang, Y., Zhang, T., Deng, L., Wang, F., & Tan, T. (2018). Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. Bioresource Technology, 270, 96–102.

    Article  CAS  PubMed  Google Scholar 

  11. Choi, S., Kim, H. U., Kim, T. Y., & Lee, S. Y. (2016). Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metabolic Engineering, 38, 264–273.

    Article  CAS  PubMed  Google Scholar 

  12. Gu, Y., Lv, X., Liu, Y., Li, J., Du, G., Chen, J., Rodrigo, L. A., & Liu, L. (2019). Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering, 51, 59–69.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, Z., Yu, W., Nomura, C. T., Li, J., Chen, S., Yang, Y., & Wang, Q. (2018). Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Applied Microbiology and Biotechnology, 102(16), 6935–6946.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, W., He, Y., Zhang, F., Zhao, F., Huang, C., Zhang, Y., Zhao, Q., Wang, S., & Yang, C. (2019). Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-gamma-glutamic acid synthesis. Microbial Biotechnology, 12(5), 932–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H., Zhu, J., Zhu, X., Cai, J., Zhang, A., Hong, Y., Huang, J., Huang, L., & Xu, Z. (2012). High-level exogenous glutamic acid-independent production of poly-(gamma-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresource Technology, 116, 241–246.

    Article  CAS  PubMed  Google Scholar 

  16. Li, B. C., Cai, D. B., Hu, S. Y., Zhu, A. T., He, Z. L., & Chen, S. W. (2018). Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis 1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain. Applied Microbiology and Biotechnology, 102(23), 10127–10137.

    Article  CAS  PubMed  Google Scholar 

  17. Cai, D., Chen, Y., He, P., Wang, S., Mo, F., Li, X., Wang, Q., Nomura, C. T., Wen, Z., Ma, X., & Chen, S. (2018). Enhanced production of poly-gamma-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 115(10), 2541–2553.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J., Yuan, H., Wei, X., Chen, J., & Chen, S. (2016). Enhancement of poly-γ-glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02. Journal of Chemical Technology & Biotechnology, 91(9), 2399–2403.

    Article  CAS  Google Scholar 

  19. Wei, X., Ji, Z., & Chen, S. (2010). Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Applied Biochemistry and Biotechnology, 160(5), 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  20. Cai, D., Hu, S., Chen, Y., Liu, L., Yang, S., Ma, X., & Chen, S. (2018). Enhanced production of poly-gamma-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Applied Biochemistry and Biotechnology, 185(4), 958–970.

    Article  CAS  PubMed  Google Scholar 

  21. Nemeria, N., Yan, Y., Zhang, Z., Brown, A. M., Arjunan, P., Furey, W., Guest, J. R., & Jordan, F. (2001). Inhibition of the Escherichia coli pyruvate dehydrogenase complex E1 subunit and its tyrosine 177 variants by thiamin 2-thiazolone and thiamin 2-thiothiazolone diphosphates. Evidence for reversible tight-binding inhibition. The Journal of Biological Chemistry, 276(49), 45969–45978.

    Article  CAS  PubMed  Google Scholar 

  22. Schendel, F. J., August, P. R., Anderson, C. R., Hanson, R. S., & Flickinger, M. C. (1992). Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp. Applied and Environmental Microbiology, 58(1), 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, N., Zhang, B., Chen, T., Wang, Z., Tang, Y. J., & Zhao, X. (2013). Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. Journal of Industrial Microbiology & Biotechnology, 40(12), 1461–1475.

    Article  CAS  Google Scholar 

  24. Sonenshein, A. L. (2007). Control of key metabolic intersections in Bacillus subtilis. Nature Reviews Microbiology, 5(12), 917–927.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, H. W., Madzak, C., Du, G. C., Zhou, J. W., & Chen, J. (2014). Effects of pyruvate dehydrogenase subunits overexpression on the alpha-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Applied Microbiology and Biotechnology, 98(16), 7003–7012.

    Article  CAS  PubMed  Google Scholar 

  26. Sha, Y., Sun, T., Qiu, Y., Zhu, Y., Zhan, Y., Zhang, Y., Xu, Z., Li, S., Feng, X., & Xu, H. (2019). Investigation of glutamate dependence mechanism for poly-gamma-glutamic acid production in Bacillus subtilis on the basis of transcriptome analysis. Journal of Agricultural and Food Chemistry, 67(22), 6263–6274.

    Article  CAS  PubMed  Google Scholar 

  27. Yangtse, W., Zhou, Y., Lei, Y., Qiu, Y., Wei, X., Ji, Z., Qi, G., Yong, Y., Chen, L., & Chen, S. (2012). Genome sequence of Bacillus licheniformis WX-02. Journal of Bacteriology., 194(13), 3561–3562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stokell, D. J., Donald, L. J., Maurus, R., Nguyen, N. T., Sadler, G., Choudhary, K., Hultin, P. G., Brayer, G. D., & Duckworth, H. W. (2003). Probing the roles of key residues in the unique regulatory NADH binding site of type II citrate synthase of Escherichia coli. The Journal of Biological Chemistry, 278(37), 35435–35443.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, B. Q., Shen, W., Wang, Z. X., & Zhuge, J. (2005). Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose. Sheng Wu Gong Cheng Xue Bao, 21(2), 270–274.

    CAS  PubMed  Google Scholar 

  30. Deng, Y., Ma, N., Zhu, K., Mao, Y., Wei, X., & Zhao, Y. (2018). Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering, 46, 28–34.

    Article  CAS  PubMed  Google Scholar 

  31. Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K. J., & de Mattos, M. J. (2000). Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. Journal of Bacteriology, 182(17), 4934–4940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qi, G., Kang, Y., Li, L., Xiao, A., Zhang, S., Wen, Z., Xu, D., & Chen, S. (2014). Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnology for Biofuels, 7(1), 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mitsunaga, H., Meissner, L., Palmen, T., Bamba, T., Buchs, J., & Fukusaki, E. (2016). Metabolome analysis reveals the effect of carbon catabolite control on the poly(gamma-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. Journal of Bioscience and Bioengineering, 121(4), 413–419.

    Article  CAS  PubMed  Google Scholar 

  34. Fu, J., Huo, G., Feng, L., Mao, Y., Wang, Z., Ma, H., Chen, T., & Zhao, X. (2016). Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for Biofuels, 9, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fu, J., Wang, Z., Chen, T., Liu, W., Shi, T., Wang, G., Tang, Y. J., & Zhao, X. (2014). NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnology and Bioengineering, 111(10), 2126–2131.

    Article  CAS  PubMed  Google Scholar 

  36. Rebecchi, S., Pinelli, D., Zanaroli, G., Fava, F., & Frascari, D. (2018). Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789. Biotechnology for Biofuels, 11, 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari, H., Presecan-Siedel, E., Dreesen, O., Glaser, P., & Jahn, D. (2000). Fermentative metabolism of Bacillus subtilis: Physiology and regulation of gene expression. Journal of Bacteriology, 182(11), 3072–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, J., Zhang, H., Wang, C., Chang, J. W., & Chen, L. L. (2016). Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02. Research in Microbiology, 167(4), 282–289.

    Article  CAS  PubMed  Google Scholar 

  39. Guo, J., Cheng, G., Gou, X. Y., Xing, F., Li, S., Han, Y. C., Wang, L., Song, J. M., Shu, C. C., Chen, S. W., & Chen, L. L. (2015). Comprehensive transcriptome and improved genome annotation of Bacillus licheniformis WX-02. FEBS Letters, 589(18), 2372–2381.

    Article  CAS  PubMed  Google Scholar 

  40. Huo, Y., Zhan, Y., Wang, Q., Li, S., Yang, S., Nomura, C. T., Wang, C., & Chen, S. (2018). Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: Enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess and Biosystems Engineering, 41(1), 87–96.

    Article  CAS  PubMed  Google Scholar 

  41. Kozak, B. U., van Rossum, H. M., Luttik, M. A., Akeroyd, M., Benjamin, K. R., Wu, L., de Vries, S., Daran, J. M., Pronk, J. T., & van Maris, A. J. (2014). Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio, 5(5), e01696-e1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiang, C. J., Ho, Y. J., Hu, M. C., & Chao, Y. P. (2020). Rewiring of glycerol metabolism in Escherichia coli for effective production of recombinant proteins. Biotechnology for Biofuels, 13(1), 205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Y., Huang, B., Wu, H., Li, Z., Ye, Q., & Zhang, Y. P. (2016). Production of succinate from acetate by metabolically engineered Escherichia coli. Acs Synthetic Biology., 5(11), 1299–1307.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, M., Ding, Y., Chen, H., Zhao, Z., Liu, H., Xian, M., & Zhao, G. (2017). Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. Bmc Microbiology, 17(1), 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhao, H., Fang, Y., Wang, X., Zhao, L., Wang, J., & Li, Y. (2018). Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Applied Microbiology and Biotechnology, 102(13), 5505–5518.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, L., Fang, Y., Ding, Z., Zhang, S., & Wang, X. (2019). Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnology and Applied Biochemistry, 66(6), 962–976.

    Article  CAS  PubMed  Google Scholar 

  47. Jo, M., Noh, M. H., Lim, H. G., Kang, C. W., Im, D. K., Oh, M. K., & Jung, G. Y. (2019). Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate. Microbial Cell Factories, 18(1), 57.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Noh, M. H., Lim, H. G., Park, S., Seo, S. W., & Jung, G. Y. (2017). Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering, 43(Pt A), 1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Educational Research Projects for Young and Middle-Aged Teachers in Fujian Province (No. JAT190788) and Fujian Provincial Key Laboratory of Eco-Industrial Green Technology (No. WYKF-GCT2020-3).

Author information

Authors and Affiliations

Authors

Contributions

B Li, D Cai, and S Chen designed the study. B Li carried out the molecular biology studies, construction of engineering strains, and the fermentation studies. B Li, D Cai, and S Chen analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shouwen Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 436 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Cai, D. & Chen, S. Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid. Appl Biochem Biotechnol 193, 3540–3552 (2021). https://doi.org/10.1007/s12010-021-03619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03619-4

Keywords

Navigation