Skip to main content
Log in

Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and l-valine biosynthesis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Acetolactate synthase catalyzes two molecules of pyruvates to form α-acetolactate, which is further converted to acetoin and 2,3-butanediol. In this study, by heterologous expression in Escherichia coli, the enzymatic properties of acetolactate synthase (AlsS) from Bacillus licheniformis WX-02 were characterized. Its K m and k cat for pyruvate were 3.96 mM and 514/s, respectively. It has the optimal activity at pH 6.5, 37 °C and was feedback inhibited by l-valine, l-leucine and l-isoleucine. Furthermore, the alsS-deficient strain could not produce acetoin, 2,3-butanediol, and l-valine, while the complementary strain was able to restore these capacities. The alsS overexpressing strain produced higher amounts of acetoin/2,3-butanediol (57.06 g/L) and l-valine (2.68 mM), which were 10.90 and 92.80% higher than those of the control strain, respectively. This is the first report regarding the in-depth understanding of AlsS enzymatic properties and its functions in B. licheniformis, and overexpression of AlsS can effectively improve acetoin/2,3-butanediol and l-valine production in B. licheniformis. We envision that this AlsS can also be applied in the improvement of acetoin/2,3-butanediol and l-valine production in other microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503

    Article  CAS  Google Scholar 

  2. Zhang L, Liu Q, Ge Y, Li L, Gao C, Xu P, Ma C (2016) Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem 18:1560–1570

    Article  CAS  Google Scholar 

  3. Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P (2016) Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem 18:4693–4703

    Article  CAS  Google Scholar 

  4. Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281

    Article  CAS  Google Scholar 

  5. Lu M, Park C, Lee S, Kim B, Oh M-K, Um Y, Kim J, Lee J (2014) The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst Eng 37:343–353

    Article  CAS  Google Scholar 

  6. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  Google Scholar 

  7. Liang C, Huo Y, Qi G, Wei X, Wang Q, Chen S (2015) Enhancement of l-valine production in Bacillus licheniformis by blocking three branched pathways. Biotechnol Lett 37:1243–1248

    Article  CAS  Google Scholar 

  8. Bartek T, Rudolf C, Kerßen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M (2010) Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 33:873–883

    Article  CAS  Google Scholar 

  9. Lee S-C, Kim J, La I-J, Kim S-K, Yoon M-Y (2013) Characterization of recombinant FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Enzyme Microb Technol 52:54–59

    Article  CAS  Google Scholar 

  10. Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilisalsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875

    Article  CAS  Google Scholar 

  11. Lee S-C, Jung I-P, Baig I-A, Chien P-N, La I-J, Yoon M-Y (2015) Mutational analysis of critical residues of FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Int J Biol Macromol 72:104–109

    Article  CAS  Google Scholar 

  12. Pang SS, Duggleby RG, Guddat LW (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J Mol Biol 317:249–262

    Article  CAS  Google Scholar 

  13. Park JH, Jang YS, Lee JW, Lee SY (2011) Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 108:1140–1147

    Article  CAS  Google Scholar 

  14. Chang AK, Duggleby RG (1997) Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J 327:161–169

    Article  CAS  Google Scholar 

  15. Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. BMB Rep 33:1–36

    CAS  Google Scholar 

  16. Holtzclaw WD, Chapman LF (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121:917–922

    CAS  Google Scholar 

  17. Kisrieva IuS, Serebrennikov VM, Zagustina NA, Bezborodov AM (2000) Isolation and purification of acetolactate synthase and acetolactate decarboxylase from a Lactococcus lactis culture. Prikl Biokhim Mikrobiol 36:131–137

    CAS  Google Scholar 

  18. Snoep JL, De Mattos MT, Starrenburg MJ, Hugenholtz J (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 174:4838–4841

    Article  CAS  Google Scholar 

  19. Phalip V, Schmitt P, Diviès C (1995) Purification and characterization of the catabolic α-acetolactate synthase from Leuconostoc mesenteroides subsp. cremoris. Curr Microbiol 31:316–321

    Article  CAS  Google Scholar 

  20. Peng HL, Wang PY, Wu CM, Hwang DC, Chang HY (1992) Cloning, sequencing and heterologous expression of a Klebsiella pneumoniae gene encoding an FAD-independent acetolactate synthase. Gene 117:125–130

    Article  CAS  Google Scholar 

  21. Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68

    Article  CAS  Google Scholar 

  22. Nguyen DM, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MW (2016) Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metab Eng 34:71–79

    Article  CAS  Google Scholar 

  23. Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16

    Article  Google Scholar 

  24. Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Appl Biochem Biotechnol 160:1332–1340

    Article  CAS  Google Scholar 

  25. Liu Y, Zhang S, Yong Y-C, Ji Z, Ma X, Xu Z, Chen S (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46:390–394

    Article  CAS  Google Scholar 

  26. Tian G, Fu J, Wei X, Ji Z, Ma X, Qi G, Chen S (2014) Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02. J Chem Technol Biotechnol 89:1825–1832

    Article  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  28. Singh BK, Stidham MA, Shaner DL (1988) Assay of acetohydroxyacid synthase. Anal Biochem 171:173–179

    Article  CAS  Google Scholar 

  29. Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S (2016) Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol Biofuels 9:117

    Article  Google Scholar 

  30. Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191

    Article  CAS  Google Scholar 

  31. Fradrich C, March A, Fiege K, Hartmann A, Jahn D, Hartig E (2012) The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol 194:1100–1112

    Article  Google Scholar 

  32. Tsau JL, Guffanti AA, Montville TJ (1992) Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl Environ Microbiol 58:891–894

    CAS  Google Scholar 

  33. Guo Y, Han M, Xu J, Zhang W (2015) Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 109:106–112

    Article  CAS  Google Scholar 

  34. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    Article  CAS  Google Scholar 

  35. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  CAS  Google Scholar 

  36. Gao X, Xu N, Li S, Liu L (2014) Metabolic engineering of Candida glabrata for diacetyl production. PLoS One 9:e89854

    Article  Google Scholar 

  37. Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75:6306–6311

    Article  CAS  Google Scholar 

  38. Kaushal A, Pabbi S, Sharma P (2003) Characterization of 2,3-butanediol-forming and valine-sensitive α-acetolactate synthase of Enterobacter cloacae. World J Microbiol Biotechnol 19:487–493

    Article  CAS  Google Scholar 

  39. Zhu Y, Chen X, Chen T, Zhao X (2007) Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. FEMS Microbiol Lett 266:224–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Program on Key Basic Research Project (973 Program, No. 2015CB150505), the Science and Technology Program of Wuhan (20160201010086), rural areas of the national science and technology plan in the 12th five-year plan of China (No. 2013AA102801-52).

Author information

Authors and Affiliations

Authors

Contributions

SC designed and supervised the study. YH and YZ performed the experiments. YH, YZ, QW, SL, SY, CN, CW and SC analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changjun Wang or Shouwen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Zhan, Y., Wang, Q. et al. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and l-valine biosynthesis. Bioprocess Biosyst Eng 41, 87–96 (2018). https://doi.org/10.1007/s00449-017-1847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1847-2

Keywords

Navigation