Skip to main content
Log in

Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL−1 when the recombinant cells were induced with 50 ng mL−1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams, T. B., McGowen, M. M., Williams, M. C., Cohen, S. M., Feron, V. J., Goodman, J. I., Marnett, L. J., Munro, I. C., Portoghese, P. S., Smith, R. L., & Waddell, W. J. (2007). The FEMA GRAS assessment of aromatic substituted secondary alcohols, ketones, and related esters used as flavor ingredients. Food and Chemical Toxicology, 45, 171–201.

    Article  CAS  Google Scholar 

  2. Feron, V. J., Til, H. P., de Vrijer, F., Woutersen, R. A., Cassee, F. R., & van Bladeren, P. J. (1991). Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutation Research/Genetic Toxicology, 259, 363–385.

    Article  CAS  Google Scholar 

  3. Giebultowicz, J., Dziadek, M., Wroczynski, P., Woznicka, K., Wojno, B., Pietrzak, M., & Wierzchowski, J. (2010). Salivary aldehyde dehydrogenase—temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food. Acta Biochimica Polonica, 57, 361–368.

    CAS  Google Scholar 

  4. Lachenmeier, D. W., & Sohnius, E.-M. (2008). The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food and Chemical Toxicology, 46, 2903–2911.

    Article  CAS  Google Scholar 

  5. Ellis, E. M. (2007). Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Therape, 115, 13–24.

    Article  CAS  Google Scholar 

  6. Grimsrud, P. A., Xie, H. W., Griffin, T. J., & Bernlohr, D. A. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. The Journal of Biological Chemistry, 283, 21837–21841.

    Article  CAS  Google Scholar 

  7. Hou, Y., Liu, Y.-Y., & Zhao, X.-K. (2013). Expression of aldehyde dehydrogenase 1 in colon cancer. Asian Pacific Journal of Tropical Medicine, 6, 574–577.

    Article  CAS  Google Scholar 

  8. Je, Y., DeVivo, I., & Giovannucci, E. (2014). Long-term alcohol intake and risk of endometrial cancer in the Nurses' Health Study, 1980-2010. British Journal of Cancer, 111, 186–194.

    Article  CAS  Google Scholar 

  9. Laniewska-Dunaj, M., Jelski, W., Orywal, K., Kochanowicz, J., Rutkowski, R., & Szmitkowski, M. (2013). The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer. Neurochemical Research, 38, 1517–1521.

    Article  CAS  Google Scholar 

  10. Lindahl, R. (1992). Aldehyde dehydrogenases and their role in carcinogenesis. Critical Reviews in Biochemistry and Molecular Biology, 27, 283–335.

    Article  CAS  Google Scholar 

  11. Crabb, D. W., Matsumoto, M., Chang, D., & You, M. (2004). Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. The Proceedings of the Nutrition Society, 63, 49–63.

    Article  CAS  Google Scholar 

  12. Sophos, N. A., & Vasiliou, V. (2003). Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem-biol Interect, 143, 5–22.

    Article  Google Scholar 

  13. Vasiliou, V., Pappa, A., & Petersen, D. R. (2000). Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-Biological Interactions, 129, 1–19.

    Article  CAS  Google Scholar 

  14. Sripo, T., Phongdara, A., Wanapu, C., & Caplan, A. B. (2002). Screening and characterization of aldehyde dehydrogenase gene from Halomonas salina strain AS11. Journal of Biotechnology, 95, 171–179.

    Article  CAS  Google Scholar 

  15. Toh, Y., Oki, E., Ohgaki, K., Sakamoto, Y., Ito, S., Egashira, A., Saeki, H., Kakeji, Y., Morita, M., Sakaguchi, Y., Okamura, T., & Maehara, Y. (2010). Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. International Journal of Clinical Oncology, 15, 135–144.

    Article  CAS  Google Scholar 

  16. Wang, M.-F., Han, C.-L., & Yin, S.-J. (2009). Substrate specificity of human and yeast aldehyde dehydrogenases. Chemico-Biological Interactions, 178, 36–39.

    Article  CAS  Google Scholar 

  17. Lo, H.-F., & Chen, Y.-J. (2010). Gene cloning and biochemical characterization of a NAD(P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis. Molecular Biotechnology, 46, 157–167.

    Article  CAS  Google Scholar 

  18. Meaden, P. G., Dickinson, F. M., Mifsud, A., Tessier, W., Westwater, J., Bussey, H., & Midgley, M. (1997). The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. Yeast, 13, 1319–1327.

    Article  CAS  Google Scholar 

  19. Ohta, T., Tani, A., Kimbara, K., & Kawai, F. (2005). A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Applied Microbiology and Biotechnology, 68, 639–646.

    Article  CAS  Google Scholar 

  20. Raj, S. M., Rathnasingh, C., Jung, W. C., Selvakumar, E., & Park, S. (2010). A novel NAD(+)-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol Bioproc E, 15, 131–138.

    Article  CAS  Google Scholar 

  21. Yamanaka, Y., Kazuoka, T., Yoshida, M., Yamanaka, K., Oikawa, T., & Soda, K. (2002). Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp KUC-1: enzymological characteristics and functional properties. Biochem Bioph Res Co, 298, 632–637.

    Article  CAS  Google Scholar 

  22. Yao, Z. Y., Zhang, C., Lu, F. X., Bie, X. M., & Lu, Z. X. (2012). Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2. Applied Microbiology and Biotechnology, 93, 1999–2009.

    Article  CAS  Google Scholar 

  23. Schadlicha, L., Senger, T., Kirschning, C. J., Muller, M., & Gissmann, L. (2009). Refining HPV 16 L1 purification from E. coli: Reducing endotoxin contaminations and their impact on immunogenicity. Vaccine, 27, 1511–1522.

    Article  Google Scholar 

  24. Siegumfeldt, H., Rechinger, K. B., & Jakobsen, M. (2000). Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Applied and Environmental Microbiology, 66, 2330–2335.

    Article  CAS  Google Scholar 

  25. Hols, P., Kleerebezem, M., Schanck, A. N., Ferain, T., Hugenholtz, J., Delcour, J., & de Vos, W. M. (1999). Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 17, 588–592.

    Article  CAS  Google Scholar 

  26. Kunji, E. R. S., Slotboom, D. J., & Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta-Biomembranes, 1610, 97–108.

    Article  CAS  Google Scholar 

  27. Mierau, I., Leij, P., van Swam, I., Blommestein, B., Floris, E., Mond, J., & Smid, E. J. (2005). Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microbial Cell Factories, 4, 15.

  28. Mierau, I., Olieman, K., Mond, J., & Smid, E. J. (2005). Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microbial Cell Factories, 4, 16.

  29. de Ruyter, P. G., Kuipers, O. P., & de Vos, W. M. (1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology, 62, 3662–3667.

  30. Holo, H., & Nes, I. F. (1995). Transformation of Lactococcus by electroporation. Electroporation protocols for microorganisms, 195–199.

  31. Bostian, K. A., & Betts, G. F. (1978). Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae. The Biochemical Journal, 173, 773–786.

    Article  CAS  Google Scholar 

  32. Zhang, W., Wang, C., Huang, C. Y., Yu, Q., Liu, H. C., Zhang, C. W., & Pei, X. F. (2012). Construction and secretory expression of beta-galactosidase gene from Lactobacillus bulgaricus in Lactococcus lactis. Biomedical and environmental sciences : BES, 25, 203–209.

    CAS  Google Scholar 

  33. Yao, Z., Zhang, C., Zhao, J., Lu, F., Bie, X., & Lu, Z. (2014). Acetaldehyde detoxification using resting cells of recombinant Escherichia coli overexpressing acetaldehyde dehydrogenase. Applied Biochemistry and Biotechnology, 172, 2030–2040.

    Article  CAS  Google Scholar 

  34. Jo, J.-E., Raj, S. M., Rathnasingh, C., Selvakumar, E., Jung, W.-C., & Park, S. (2008). Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Applied Microbiology and Biotechnology, 81, 51–60.

    Article  CAS  Google Scholar 

  35. Mierau, I., & Kleerebezem, M. (2005). 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology, 68, 705–717.

    Article  CAS  Google Scholar 

  36. Zhang, X., Hu, S., Du, X., Li, T., Han, L. & Kong, J. (2016). Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. Journal of Microbiology, Immunology and Infection, 49, 851–858.

  37. Renye, J. A., & Somkuti, G. A. (2015). Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria. Biotechnology Letters, 37, 1447–1454.

    Article  CAS  Google Scholar 

  38. Cook, G. M., & Russell, J. B. (1994). The effect of extracellular pH and lactic-acid on pH homeostasis in Lactococcus-lactis and Streptococcus-bovis. Current Microbiology, 28, 165–168.

    Article  CAS  Google Scholar 

  39. Budin-Verneuil, A., Maguin, E., Auffray, Y., Ehrlich, S. D., & Pichereau, V. (2005). Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. FEMS Microbiology Letters, 250, 189–194.

    Article  CAS  Google Scholar 

  40. Casiano-Colón, A., & Marquis, R. E. (1988). Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Applied and Environmental Microbiology, 54, 1318–1324.

    Google Scholar 

  41. Klijn, N., Weerkamp, A. H., & de Vos, W. M. (1995). Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Applied and Environmental Microbiology, 61, 2771–2774.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Lu.

Ethics declarations

Conflict of Interest

The authors declare that there is no commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., LaPointe, G., Zhong, L. et al. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH. Appl Biochem Biotechnol 184, 570–581 (2018). https://doi.org/10.1007/s12010-017-2573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2573-6

Keywords

Navigation