Skip to main content
Log in

Growth Parameters, Photosynthetic Performance, and Biochemical Characterization of Newly Isolated Green Microalgae in Response to Culture Condition Variations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l−1 day−1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l−1 day−1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m−2 s−1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m−2 s−1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research and development aspects. Renewable and Sustainable Energy Reviews, 20, 642–656.

    Article  CAS  Google Scholar 

  2. Jazzar, S., Olivares-Carrillo, P., Pérez de los Ríos, A., Marzouki, M. N., Acién-Fernández, F. G., Fernández-Sevilla, J. M., Molina-Grima, E., Smaali, I., & Quesada-Medina, J. (2015). Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel. Applied Energy, 148, 210–219.

    Article  CAS  Google Scholar 

  3. Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. (2015). Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 11, 381–386.

    Article  Google Scholar 

  4. Gao, Y., Yang, M., & Wang, C. (2013). Nutrient deprivation enhances lipid content in marine microalgae. Bioresource Technology, 147, 484–491.

    Article  CAS  Google Scholar 

  5. Chaichalerm, S., Pokethitiyook, P., Yuan, W., Meetam, M., Sritong, K., Pugkaew, W., Kungvansaichol, K., Kruatrachue, M., & Damrongphol, P. (2012). Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Applied Energy, 89, 296–302.

    Article  CAS  Google Scholar 

  6. Zhou, W., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102, 6909–6919.

    Article  CAS  Google Scholar 

  7. Jazzar, S., Quesada-Medina, J., Olivares-Carrillo, P., Marzouki, M. N., Acién-Fernández, F. G., Fernández-Sevilla, J. M., Molina-Grima, E., & Smaali, I. (2015). A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresource Technology, 190, 281–288.

    Article  CAS  Google Scholar 

  8. Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, C., & Perales, J. A. (2014). Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Applied Biochemistry and Biotechnology, 174, 1471–1483.

    Article  Google Scholar 

  9. Bertozzini, E., Galluzzi, L., Ricci, F., Penna, A., & Magnani, M. (2013). Neutral lipid content and biomass production in Skeletonema marinoi (Bacillariophyceae) culture in response to nitrate limitation. Applied Biochemistry and Biotechnology, 170, 1624–1636.

    Article  CAS  Google Scholar 

  10. Kamalanathan, M., Gleadow, R., & Beardall, J. (2015). Impacts of phosphorus availability on lipid production by Chlamydomonas reinhardtii. Algal Research, 12, 191–196.

    Article  Google Scholar 

  11. Bona, F., Capuzzo, A., Franchino, M., & Maffei, M. E. (2014). Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. Algal Research, 5, 1–6.

    Article  Google Scholar 

  12. San Pedro, A., González-López, C. V., Acién, F. G., & Molina-Grima, E. (2015). Outdoor pilot production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in raceway ponds. Algal Research, 8, 205–213.

    Article  Google Scholar 

  13. Jiang, Y., Yoshida, T., & Quigg, A. (2012). Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiology and Biochemistry, 54, 70–77.

    Article  CAS  Google Scholar 

  14. Beardall, J., Roberts, S., & Raven, J. A. (2005). Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of Botany, 83, 859–864.

    Article  CAS  Google Scholar 

  15. Chu, F. F., Chu, P. N., Shen, X. F., Lam, P. K. S., & Zeng, R. J. (2014). Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 152, 241–246.

    Article  CAS  Google Scholar 

  16. Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494–5500.

    Article  CAS  Google Scholar 

  17. Arbib, Z., Ruiz, J., Perales, J. A., De Excelencia, C., & Real, P. (2013). Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus. International Journal of Phytoremediation, 15, 774–788.

    Article  CAS  Google Scholar 

  18. Garrido, M., Cecchi, P., Vaquer, A., & Pasqualini, V. (2013). Effects of sample conservation on assessments of the photosynthetic efficiency of phytoplankton using PAM fluorometry. Deep-Sea Research I, 71, 38–48.

    Article  CAS  Google Scholar 

  19. Armi, Z., Trabelsi, E., Turki, S., Ben Maiz, N., & Mahmoudi, E. (2012). Composition and dynamics of potentially toxic dinoflagellates in a shallow Mediterranean lagoon. International Journal of Oceanography and Hydrobiology, 41, 25–35.

    Google Scholar 

  20. Walne, P. R. (1966). Experiments in the large-scale culture of the larvae of Ostrea edulis L. Fishery Investigations Series, 2(25), 1–53.

    Google Scholar 

  21. de la Vega, M., Díaz, E., Vila, M., & León, R. (2011). Isolation of a new strain of Picochlorum sp and characterization of its potential biotechnological applications. Biotechnology Progress, 27, 1535–1543.

    Article  Google Scholar 

  22. Grzebyk, D., Sako, Y., & Berland, B. (1998). Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis, sp. nov. Journal of Phycology, 34, 1055–1068.

    Article  CAS  Google Scholar 

  23. Sogin, M. L. (1990). Amplification of ribosomal RNA genes for molecular evolution studies. PCR Protocols: A Guide to Methods and Applications, 307–314.

  24. San Pedro, A., González-López, C. V., Acién, F. G., & Molina-Grima, E. (2013). Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresource Technology, 134, 353–361.

    Article  CAS  Google Scholar 

  25. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35, 171–205.

    CAS  Google Scholar 

  26. Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: i. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Canadian Journal of Microbiology, 8, 229–239.

    Article  CAS  Google Scholar 

  27. Ralph, P. J., & Gademann, R. (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82(3), 222–237.

    Article  CAS  Google Scholar 

  28. Jassby, A. D., & Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540–547.

    Article  CAS  Google Scholar 

  29. Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. In J. S. Hellebust & J. A. Craigie (Eds.), Handbook of physiological and biochemical methods (pp. 96–97). Cambridge: Cambridge Univ. Press.

    Google Scholar 

  30. Dubois, M., Gilles, K., & Hamilton, J. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  31. AOAC. (1995). Official Methods of Analysis of AOAC International. Washington DC: Association of Official Analytical Chemists.

    Google Scholar 

  32. Doan, T. T. Y., Sivaloganathan, B., & Obbard, J. P. (2011). Screening of marine microalgae for biodiesel feedstock. Biomass and Bioenergy, 35, 2534–2544.

    Article  CAS  Google Scholar 

  33. Messaoud, C., Laabidi, A., & Boussaid, M. (2012). Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities. Journal of Food Science, 77, 941–947.

    Article  Google Scholar 

  34. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.

    Article  CAS  Google Scholar 

  35. Kumar, V., Muthuraj, M., Palabhanvi, B., Ghoshal, A. K., & Das, D. (2014). High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresource Technology, 170, 115–124.

    Article  CAS  Google Scholar 

  36. Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204–212.

    Article  CAS  Google Scholar 

  37. Xia, L., Song, S., He, Q., Yang, H., & Hu, C. (2014). Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China. Bioresource Technology, 174, 274–280.

    Article  CAS  Google Scholar 

  38. Aravantinou, A. F., Theodorakopoulos, M. A., & Manariotis, I. D. (2013). Selection of microalgae for wastewater treatment and potential lipids production. Bioresource Technology, 147, 130–134.

    Article  CAS  Google Scholar 

  39. Go, S., Lee, S. J., Jeong, G. T., & Kim, S. K. (2012). Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica. Bioprocess and Biosystems Engineering, 35, 145–150.

    Article  CAS  Google Scholar 

  40. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.

    CAS  Google Scholar 

  41. Carvalho, A. P., Pontes, I., Gaspar, H., & Malcata, F. X. (2006). Metabolic relationships between macro- and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme and Microbial Technology, 38, 358–366.

    Article  CAS  Google Scholar 

  42. Camacho-Rodríguez, J., Cerón-García, M. C., Fernández-Sevilla, J. M., & Molina-Grima, E. (2015). Genetic algorithm for the medium optimization of the microalga Nannochloropsis gaditana cultured to aquaculture. Bioresource Technology, 177, 102–109.

    Article  Google Scholar 

  43. Schreiber, U., & Klughammer, C. (2012). Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynthesis Research, 113, 127–144.

    Article  CAS  Google Scholar 

  44. Kobayashi, N., Noel, E. A., Barnes, A., Watson, A., Rosenberg, J. N., Erickson, G., & Oyler, G. A. (2013). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology, 150, 377–386.

    Article  CAS  Google Scholar 

  45. Gatenby, C. M., Orcutt, D. M., Kreeger, D. A., Parker, B. C., Jones, V. A., & Neves, R. J. (2003). Biochemical composition of three algal species proposed as food for captive freshwater mussels. Journal of Applied Phycology, 15, 1–11.

    Article  CAS  Google Scholar 

  46. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  47. Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology, 25, 311–318.

    Article  CAS  Google Scholar 

  48. Chandra, T. S., Deepak, R. S., Maneesh, M., Mukherji, S., Chauhan, V. S., Sarada, R., & Mudliar, S. N. (2016). Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresource Technology, 207, 430–439.

    Article  Google Scholar 

  49. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.

    Article  CAS  Google Scholar 

  50. Ho, S. H., Ye, X., Hasunuma, T., Chang, J. S., & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnology Advances, 32, 1448–1459.

    Article  CAS  Google Scholar 

  51. Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., Soares, H. M. (2015). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 1–13.

  52. Li, T., Zheng, Y., Yu, L., & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology, 131, 60–67.

    Article  CAS  Google Scholar 

  53. Nascimento, I. A., Cabanelas, I. T. D., dos Santos, J. N., Nascimento, M. A., Sousa, L., & Sansone, G. (2015). Biodiesel yields and fuel quality as criteria for algal-feedstock selection: effects of CO2-supplementation and nutrient levels in cultures. Algal Research, 8, 53–60.

    Article  Google Scholar 

  54. Zheng, Y., Li, T., Yu, X., Bates, P. D., Dong, T., & Chen, S. (2013). High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 108, 281–287.

    Article  CAS  Google Scholar 

  55. Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Carvalho, G. C., Nascimento, M. A., Souza, C. O., Druzian, J. I., Hussain, J., & Liao, W. (2014). Microalgae versus land crops as feedstock for biodiesel: productivity, quality, and standard compliance. Bioenergy Research, 7, 1002–1013.

    CAS  Google Scholar 

  56. Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology, 24, 989–1001.

    Article  CAS  Google Scholar 

  57. Francisco, É. C., Neves, D. B., Jacob-Lopes, E., & Franco, T. T. (2010). Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology, 85, 395–403.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Tunisian Ministry of Higher Education and Scientific Research-University of Carthage (Tunisia) for supporting Souhir Jazzar with a grant for young researcher for a period of 3 years during her thesis. The authors would like to acknowledge the professors, Emilio Molina-Grima, Francisco Gabriel Acién-Fernández, and José María Fernández-Sevilla from the Department of Chemical Engineering, University of Almería, E-04120 Almería (Spain), for their relevant discussions and scientific support in the PAM measurements of microalgae. The authors are also grateful to Ms. Donia Weslati for the English check of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Smaali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazzar, S., Berrejeb, N., Messaoud, C. et al. Growth Parameters, Photosynthetic Performance, and Biochemical Characterization of Newly Isolated Green Microalgae in Response to Culture Condition Variations. Appl Biochem Biotechnol 179, 1290–1308 (2016). https://doi.org/10.1007/s12010-016-2066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2066-z

Keywords

Navigation