Skip to main content

Advertisement

Log in

Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Thermal spray coating is a procedure that deposits many particles on the coating layer. This paper reviews thermal spray process numerical models. These models have both benefits and drawbacks. The future in the thermal coating process numerical simulation trends have been addressed in this article. The research closes with a numerical model analysis and development possibilities. FGCs solve traditional coatings' problems. It involves mathematical and computer simulations of FGC behaviour. To verify model accuracy, experimental data is compared to numerical model output. The numerical model shows stress distribution, thermal behaviour, and diffusion processes, allowing design optimisation. It also simplifies physics. FGC and numerical modelling can improve advanced engineering coating performance, durability, and functionality. Coatings can improve energy conversion, storage, and other applications. Future work includes using advanced numerical methods to increase model accuracy and creating new models for specialised purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: scopus.com)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bernard, B., Quet, A., Bianchi, L., Joulia, A., Malié, A., Schick, V., et al.: Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS). Surf. Coat. Technol. 318, 122–128 (2017)

    Article  Google Scholar 

  2. Fauchais, P.L., Heberlein, J.V., Boulos, M.I.: Combustion Spraying Systems. Thermal Spray Fundamentals, pp. 227–303. Springer, Berlin (2014)

    Google Scholar 

  3. Jabbari, F., Jadidi, M., Wuthrich, R., Dolatabadi, A.: A numerical study of suspension injection in plasma-spraying process. J. Therm. Spray Technol. 23, 3–13 (2014)

    Article  Google Scholar 

  4. Góral, M., Kubaszek, T., Kościelniak, B.: Thermal Spraying of MCrAlY Overlay Coating Using New Ethanol-Fueled HVOF Gun. Solid State Phenomena, pp. 139–144. Trans Tech Publication, Zürich (2022)

    Google Scholar 

  5. Jin, L., Ni, L., Yu, Q., Rauf, A., Zhou, C.: Thermal cyclic life and failure mechanism of nanostructured 13 wt% Al2O3 doped YSZ coating prepared by atmospheric plasma spraying. Ceram. Int. 38, 2983–2989 (2012)

    Article  Google Scholar 

  6. Loghman-Estarki, M.R., Razavi, R.S., Edris, H., Jamali, H.: Life time of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment. Ceram. Int. 40, 1405–1414 (2014)

    Article  Google Scholar 

  7. Mulone, A., Mahade, S., Björklund, S., Lundström, D., Kjellman, B., Joshi, S., et al.: Development of yttria-stabilized zirconia and graphene coatings obtained by suspension plasma spraying: thermal stability and influence on mechanical properties. Cerem. Int. 49, 9000–9009 (2023)

    Article  Google Scholar 

  8. Toma, F.-L., Potthoff, A., Berger, L.-M., Leyens, C.: Demands, potentials, and economic aspects of thermal spraying with suspensions: a critical review. J. Therm. Spray Technol. 24, 1143–1152 (2015)

    Article  Google Scholar 

  9. Ulianitsky, V.Y., Batraev, I.S., Rybin, D.K., Dudina, D.V., Shtertser, A.A., Ukhina, A.V.: Detonation spraying of Cr3C2–NiCr coatings and their properties. J. Therm. Spray Technol. 31, 598–608 (2022)

    Article  Google Scholar 

  10. Basha, G.M.T., Srikanth, A., Venkateshwarlu, B.: A critical review on nano structured coatings for alumina–titania (Al2O3–TiO2) deposited by air plasma spraying process (APS). Mater. Today Proc. 22, 1554–1562 (2020)

    Article  Google Scholar 

  11. Khan, A.N., Lu, J.: Manipulation of air plasma spraying parameters for the production of ceramic coatings. J. Mater. Process. Technol. 209, 2508–2514 (2009)

    Article  Google Scholar 

  12. Park, T.S., Adomako, N.K., Ashong, A.N., Kim, Y.K., Yang, S.M., Kim, J.H.: Interfacial structure and physical properties of high-entropy oxide coatings prepared via atmospheric plasma spraying. Coatings 11, 755 (2021)

    Article  Google Scholar 

  13. Wang, Y., Wang, X., Wang, X., Yang, Y., Cui, Y., Ma, Y., Sun, W.: Microstructure and properties of in-situ composite coatings prepared by plasma spraying MoO3–Al composite powders. Ceram. Int. (2020)

  14. Cai, Z., Jiang, J., Wang, W., Liu, Y., Cao, Z.: CMAS penetration-induced cracking behavior in the ceramic top coat of APS TBCs. Ceram. Int. 45, 14366–14375 (2019)

    Article  Google Scholar 

  15. Wen, K., Liu, X., Zhou, K., Liu, M., Zhu, H., Huang, J., et al.: 3D time-dependent numerical simulation for atmospheric plasma spraying. Surf. Coat. Technol. 371, 344–354 (2019)

    Article  Google Scholar 

  16. Pasandideh-Fard, M., Mostaghimi, J., Chandra, S.: Numerical Simulation of Thermal Spray Coating Formation. ITSC 2000, pp. 125–134. ASM International, Almere (2000)

    Google Scholar 

  17. Li, W.Y., Gao, W.: Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Appl. Surf. Sci. 255, 7878–7892 (2009)

    Article  Google Scholar 

  18. Candel, A., Gadow, R.: Trajectory generation and coupled numerical simulation for thermal spraying applications on complex geometries. J. Therm. Spray Technol. 18, 981–987 (2009)

    Article  Google Scholar 

  19. Zeoli, N., Gu, S., Kamnis, S.: Numerical simulation of in-flight particle oxidation during thermal spraying. Comput. Chem. Eng. 32, 1661–1668 (2008)

    Article  Google Scholar 

  20. Shan, Y., Coyle, T.W., Mostaghimi, J.: Numerical simulation of droplet breakup and collision in the solution precursor plasma spraying. J. Therm. Spray Technol. 16, 698–704 (2007)

    Article  Google Scholar 

  21. Windt, C., Davidson, J., Ringwood, J.V.: High-fidelity numerical modelling of ocean wave energy systems: a review of computational fluid dynamics-based numerical wave tanks. Renew. Sustain. Energy Rev. 93, 610–630 (2018)

    Article  Google Scholar 

  22. Ramzan, M., Riasat, S., Kadry, S., Long, C., Nam, Y., Lu, D.: Numerical simulation of 3D condensation nanofluid film flow with carbon nanotubes on an inclined rotating disk. Appl. Sci. 10, 1680 (2019)

    Article  Google Scholar 

  23. Fukanuma, H., Huang, R., Tanaka, Y., Uesugi, Y.: Mathematical Modeling and numerical simulation of splat cooling in plasma spray coatings. J. Therm. Spray Technol. 18, 965–974 (2009)

    Article  Google Scholar 

  24. Gadow, R., Candel, A., Floristán, M.: Optimized robot trajectory generation for thermal spraying operations and high quality coatings on free-form surfaces. Surf. Coat. Technol. 205, 1074–1079 (2010)

    Article  Google Scholar 

  25. Ghelichi, R., Bagherifard, S., Guagliano, M., Verani, M.: Numerical simulation of cold spray coating. Surf. Coat. Technol. 205, 5294–5301 (2011)

    Article  Google Scholar 

  26. Liu, S., Tian, Z., Shen, L., Qiu, M.: Numerical simulation and experimental investigation of laser ablation of Al2O3 ceramic coating. Materials 13, 5502 (2020)

    Article  Google Scholar 

  27. Zhu, J., Xie, H., Hu, Z., Chen, P., Zhang, Q.: Residual stress in thermal spray coatings measured by curvature based on 3D digital image correlation technique. Surf. Coat. Technol. 206, 1396–1402 (2011)

    Article  Google Scholar 

  28. Kamnis, S., Gu, S., Lu, T.J., Chen, C.: Numerical modeling the bonding mechanism of HVOF sprayed particles. Comput. Mater. Sci. 46, 1038–1043 (2009)

    Article  Google Scholar 

  29. Jadidi, M., Moghtadernejad, S., Dolatabadi, A.: Numerical modeling of suspension HVOF spray. J. Therm. Spray Technol. 25, 451–464 (2016)

    Article  Google Scholar 

  30. Heydari-Astaraee, A., Colombo, C., Bagherifard, S.: Numerical modeling of bond formation in polymer surface metallization using cold spray. J. Therm. Spray Technol. 30, 1765–1776 (2021)

    Article  Google Scholar 

  31. Shan, Y., Coyle, T. W., Mostaghimi, J.: Numerical simulation of the solution precursor plasma spraying process. Therm. Spray 2007 Glob. Coat. Solut. 190–195 (2007)

  32. Gao, X., Li, C., Han, X., Chen, X., Zhao, X.: Numerical simulation and parameter sensitivity analysis of multi-particle deposition behavior in HVAF spraying. Surf. Coat. Technol. 441, 128569 (2022)

    Article  Google Scholar 

  33. Alavi, S., Passandideh-Fard, M.: Numerical simulation of droplet impact and solidification including thermal shrinkage in a thermal spray process. In: International Heat Transfer Conference 2010, pp. 731–739

  34. Wiederkehr, T., Klusemann, B., Gies, D., Müller, H., Svendsen, B.: An image morphing method for 3D reconstruction and FE-analysis of pore networks in thermal spray coatings. Comput. Mater. Sci. 47, 881–889 (2010)

    Article  Google Scholar 

  35. Jia, D., Liu, Y., Yi, P., Zhan, X., Ma, J., Mostaghimi, J.: Splat formation mechanism of droplet-filled cold-textured groove during plasma spraying. Appl. Therm. Eng. 173, 115239 (2020)

    Article  Google Scholar 

  36. Ding, S., He, P., Ma, G., Chen, S., Wang, H., Wu, Z., et al.: Numerical simulation and experimental study of heat accumulation in cylinder parts during internal rotating plasma spraying. J. Therm. Spray Technol. 28, 1636–1650 (2019)

    Article  Google Scholar 

  37. Pinto, G., Silva, F.J.G., Porteiro, J., Miguez, J.L., Baptista, A., Fernandes, L.: A critical review on the numerical simulation related to physical vapour deposition. Procedia Manuf. 17, 860–869 (2018)

    Article  Google Scholar 

  38. Saito, H., Suzuki, T., Fujino, T., Suzuki, M.: Numerical simulation of suspension plasma spraying with axial injection. Mater. Trans. 59, 1791–1797 (2018)

    Article  Google Scholar 

  39. Hsu, T.Y., Huang, T.C., Chou, J.H., Lin, Y.F., Nakagawa, K., Yoshioka, T., et al.: A numerical simulation and experimental comparison of atmospheric thermal plasma spray coatings between internal and external powder injection processes. IEEE Trans. Plasma Sci. 48, 2759–2767 (2020)

    Article  Google Scholar 

  40. Hou, Y., Tao, Y., Huai, X., Zou, Y., Sun, D.: Numerical simulation of multi-nozzle spray cooling heat transfer. Int. J. Therm. Sci. 125, 81–88 (2018)

    Article  Google Scholar 

  41. Shen, M., Li, B.Q., Bai, Y.: Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying. Int. J. Heat Mass Transf. 150, 119267 (2020)

    Article  Google Scholar 

  42. Ren, J., Zhang, G., Rong, Y., Ma, Y.: A feature-based model for optimizing HVOF process by combining numerical simulation with experimental verification. J. Manuf. Process. 64, 224–238 (2021)

    Article  Google Scholar 

  43. Abubakar, A.A., Arif, A.F.M., Akhtar, S.S., Mostaghimi, J.: Splats formation, interaction and residual stress evolution in thermal spray coating using a hybrid computational model. J. Therm. Spray Technol. 28, 359–377 (2019)

    Article  Google Scholar 

  44. Horner, M.J., Yoon, C., Furgeson, M., Oliver, T.A., Bogard, D.G.: Experimental and computational investigation of integrated internal and film cooling designs incorporating a thermal barrier coating. J. Turbomach. 144, 091001 (2022)

    Article  Google Scholar 

  45. Horn, A.M., Rahman, T., Pasqualino, I., Duan, M., Kang, Z., Andersen, M.R., et al.: Committee V. 8: subsea technology. In: 21st International Ship and Offshore Structures Congress, vol. 2. OnePetro (2022)

  46. Goudarzi, Z.M., Valefi, Z., Zamani, P., Taghi-Ramezani, S.: Comparative investigation of the effect of composition and porosity gradient on thermo-mechanical properties of functionally graded thick thermal barrier coatings deposited by atmospheric plasma spraying. Ceram. Int. 48, 28800–28814 (2022)

    Article  Google Scholar 

  47. Shang, G., Dyachenko, P., Leib, E.W., Vossmeyer, T., Petrov, A., Eich, M.: Conductive and radiative heat transfer inhibition in YSZ photonic glass. Ceram. Int. 46, 19241–19247 (2020)

    Article  Google Scholar 

  48. Song, J., Wang, L., Yao, J., Dong, H.: Multi-scale structural design and advanced materials for thermal barrier coatings with high thermal insulation: a review. Coatings 13, 343 (2023)

    Article  Google Scholar 

  49. Lim, L.Y.: Modelling and Characterisation of the Thermomechanical Behaviour of Thermal Barrier Coatings. University of Toronto, Toronto (2022)

    Google Scholar 

  50. Boissonnet, G.: Factors Influencing the Thermal Insulation Potential of Different Thermal Barrier Coating Systems. Université de La Rochelle, La Rochelle (2019)

    Google Scholar 

  51. Zhou, Y., Yang, L., Zhu, W.: Experimental Simulators for the Service Environments of TBCs. Thermal Barrier Coatings: Failure Theory and Evaluation Technology, pp. 879–934. Springer, Berlin (2022)

    Google Scholar 

  52. Dryepondt, S., Clarke, D.R.: Effect of superimposed uniaxial stress on rumpling of platinum-modified nickel aluminide coatings. Acta Mater. 57, 2321–2327 (2009)

    Article  Google Scholar 

  53. Zhou, Y., Yang, L., Zhu, W.: Fracture Toughness Characterization of TBCs. Thermal Barrier Coatings: Failure Theory and Evaluation Technology, pp. 447–512. Springer, Berlin (2022)

    Google Scholar 

  54. Okita, Y., Mizokami, Y., Hasegawa, J.: Erosion testing of environmental barrier-coated ceramic matrix composite and its behavior on an aero-engine turbine vane under particle-laden hot gas stream. J. Turbomach. 142, 061001 (2020)

    Article  Google Scholar 

  55. Li, D., Jiang, P., Gao, R., Sun, F., Jin, X., Fan, X.: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion. J. Adv. Ceram. 10, 551–564 (2021)

    Article  Google Scholar 

  56. Liu, P., Jiang, P., Sun, Y., Xu, R., Wang, T., Zhang, W.: Numerical analysis of stress evolution in thermal barrier coating system during two-stage growth of heterogeneous oxide. Ceram. Int. 47, 14311–14319 (2021)

    Article  Google Scholar 

  57. Burov, A., Fedorova, E.: Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys. Eng. Fail. Anal. 123, 105320 (2021)

    Article  Google Scholar 

  58. Vo, D.T., Mai, T.D., Kim, B., Ryu, J.: Numerical study on the influence of coolant temperature, pressure, and thermal barrier coating thickness on heat transfer in high-pressure blades. Int. J. Heat Mass Transf. 189, 122715 (2022)

    Article  Google Scholar 

  59. Luo, S., Bai, H., Huang, R., Qu, Z., Lv, B., Fang, D.: An in situ micro-indentation apparatus for investigating mechanical parameters of thermal barrier coatings under temperature gradient. Rev. Sci. Instrum. 93, 045102 (2022)

    Article  Google Scholar 

  60. Meng, Z., Liu, Y., Li, Y., He, X.: The performance evaluation for thermal protection of turbine vane with film cooling and thermal barrier coating. Appl. Therm. Eng. 210, 118405 (2022)

    Article  Google Scholar 

  61. Poursaeidi, E., Far, A.A., Rahimi, J., Sigaroodi, M.R.J.: Cooling channel blockage effect on TBC and substrate behavior in a gas turbine blade failure. Eng. Fail. Anal. 141, 106682 (2022)

    Article  Google Scholar 

  62. Pu, J., Zhang, T., Zhou, W.L., Wang, J.H., Wu, W.L.: Overall thermal performances of backward film cooling with simulated surface thermal barrier coatings at various walls. Case Stud. Therm. Eng. 32, 101876 (2022)

    Article  Google Scholar 

  63. Motwani, R., Gandolfo, J., Gainey, B., Levi, A., Moser, S., Filipi, Z., et al.: Assessing the impact of a novel TBC material on heat transfer in a spark ignition engine through 3D CFD-FEA co-simulation routine. SAE Technical Paper (2022)

  64. Fei, C., Lei, T., Qian, Z., Shu, Z.: Piston thermal analysis of heavy commercial vehicle diesel engine using lanthanum zirconate thermal-barrier coating. Energies 15, 4225 (2022)

    Article  Google Scholar 

  65. Bobzin, K., Bagcivan, N., Parkot, D., Schäfer, M., Petković, I.: Modeling and simulation of microstructure formation for porosity prediction in thermal barrier coatings under air plasma spraying condition. J. Therm. Spray Technol. 18, 975–980 (2009)

    Article  Google Scholar 

  66. Chen, L., Shan, L., Zhang, M., Li, H.: Modified dynamic viscosity formula for YSZ droplet solidification based on CEL method. In: 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022): SPIE. pp. 384–349 (2022)

  67. Xiao, J., Pan, J., Gu, Y., Lu, H., Yu, N., Lv, M., Chen, X.: Study on construction mechanism of ceramic-metal thermal barrier coating system by plasma spraying. Metall. Mater. Trans. A. (2023). https://doi.org/10.1007/s11661-023-07060-6

    Article  Google Scholar 

  68. Xu, R.-G., Chen, Z., Chen, P., Peng, G.J.C.: Mechanical Properties of Advanced Multifunctional Coatings, p. 599. MDPI, Basel (2022)

    Google Scholar 

  69. Sathish, M., Radhika, N., Saleh, B.: A critical review on functionally graded coatings: methods, properties, and challenges. Compos. Part B Eng. 225, 109278 (2021)

    Article  Google Scholar 

  70. Fathi, R., Wei, H., Saleh, B., Radhika, N., Jiang, J., Ma, A., et al.: Past and present of functionally graded coatings: advancements and future challenges. Appl. Mater. Today 26, 101373 (2022)

    Article  Google Scholar 

  71. Lashmi, P.G., Ananthapadmanabhan, P.V., Unnikrishnan, G., Aruna, S.T.: Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J. Eur. Ceram. Soc. 40, 2731–2745 (2020)

    Article  Google Scholar 

  72. Mehta, A., Singh, G.: Consequences of hydroxyapatite doping using plasma spray to implant biomaterials. J. Electrochem. Sci. Eng. 13, 5–23 (2023)

    Article  Google Scholar 

  73. Mehta, A., Vasudev, H., Jeyaprakash, N.: Role of sustainable manufacturing approach: microwave processing of materials. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01318-4

    Article  Google Scholar 

  74. Sharafat, S., Kobayashi, A., Ogden, V., Ghoniem, N.M.: Development of composite thermal barrier coatings with anisotropic microstructure. Vacuum 59, 185–193 (2000)

    Article  Google Scholar 

  75. Prashar, G., Vasudev, H.: Thermal barrier coatings: recent developments, challenges, and probable solutions. Surf. Rev. Lett. (2022). https://doi.org/10.1142/S0218625X22400078

    Article  Google Scholar 

  76. Luo, W.: Thermal Shock Fracture Behaviors of Functionally Graded Ceramics (2007)

  77. Pillari, L.K., Bakshi, S.R., Chaudhuri, P., Murty, B.S.: Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Adv. Powder Technol. 31, 3657–3666 (2020)

    Article  Google Scholar 

  78. Moustafa, E.B., Ghandourah, E., Youness, R.A., Melaibari, A.A., Taha, M.A.: Ultralight functionally graded hybrid nanocomposites based on yttrium and silica-reinforced Mg10Li5Al alloy: thermal and tribomechanical properties. Materials 15, 9052 (2022)

    Article  Google Scholar 

  79. Ozturk, A.: Characterization of the Tungsten-Steel Functionally Graded Cylinder in Elastic Region. Solid State Phenomena, pp. 67–71. Trans Tech Publication, Zürich (2017)

    Google Scholar 

  80. Jin, Z.H., Luo, W.J.: Thermal shock residual strength of functionally graded ceramics. Mater. Sci. Eng. A 435, 71–77 (2006)

    Article  Google Scholar 

  81. Bolelli, G., Cannillo, V., Lusvarghi, L., Rosa, R., Valarezo, A., Choi, W.B., et al.: Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surf. Coat. Technol. 206, 2585–2601 (2012)

    Article  Google Scholar 

  82. Valarezo, A., Bolelli, G., Choi, W.B., Sampath, S., Cannillo, V., Lusvarghi, L., Rosa, R.: Damage tolerant functionally graded WC–Co/stainless steel HVOF coatings. Surf. Coat. Technol. 205, 2197–2208 (2010)

    Article  Google Scholar 

  83. Ai, S., Song, Y., Yang, B., Han, Z., Wang, T.J.: Analytical solution of quenching-induced deposition stress in functionally graded thermal barrier coatings. Ceram. Int. 45, 12372–12381 (2019)

    Article  Google Scholar 

  84. Naseem, M., Verma, R., Kango, S.: Thermo-mechanical evaluation of slurry-sprayed multi-layered coatings. Arab. J. Sci. Eng. 45, 9449–9470 (2020)

    Article  Google Scholar 

  85. Amin, S., Panchal, H.: A review on thermal spray coating processes. Transfer 2, 556–563 (2016)

    Google Scholar 

  86. Berger, L.M.: Application of hardmetals as thermal spray coatings. Int. J. Refract. Met. Hard Mater. 49, 350–364 (2015)

    Article  Google Scholar 

  87. Liu, S.H., Li, C.X., Zhang, H.Y., Zhang, S.L., Li, L., Xu, P., et al.: A novel structure of YSZ coatings by atmospheric laminar plasma spraying technology. Scr. Mater. 153, 73–76 (2018)

    Article  Google Scholar 

  88. Xu, P., Pershin, L., Mostaghimi, J., Coyle, T.W.: Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray. Mater. Lett. 211, 24–27 (2018)

    Article  Google Scholar 

  89. Chen, X., Zhang, B., Gong, Y., Zhou, P., Li, H.: Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying. Appl. Surf. Sci. 439, 60–65 (2018)

    Article  Google Scholar 

  90. Miao, M., Zhao, G., Xu, L., Dong, J., Cheng, P.: Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry. J. Mass Spectrom. 53, 189–194 (2018)

    Article  Google Scholar 

  91. Zhao, S., Zhao, Y., Zou, B., Fan, X., Xu, J., Hui, Y., et al.: Characterization and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7/8YSZ functionally graded thermal barrier coating prepared by atmospheric plasma spraying. J. Alloys Compd. 592, 109–114 (2014)

    Article  Google Scholar 

  92. Sun, S., Ma, Z., Liu, Y., Liu, L., Wang, F., Guo, J.: Induction plasma spheroidization of ZrB2–SiC powders for plasma-spray coating. J. Eur. Ceram. Soc. 38, 3073–3082 (2018)

    Article  Google Scholar 

  93. Björklund, S., Goel, S., Joshi, S.: Function-dependent coating architectures by hybrid powder-suspension plasma spraying: Injector design, processing and concept validation. Mater. Des. 142, 56–65 (2018)

    Article  Google Scholar 

  94. Mehta, A., Vasudev, H., Singh, S.: Sustainable manufacturing approach with novel thermal barrier coatings in lowering CO2 emissions: performance analysis with probable solutions. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01222-x

    Article  Google Scholar 

  95. Yedida, V.S., Mehta, A., Vasudev, H., Singh, S.: Role of numerical modeling in predicting the oxidation behavior of thermal barrier coatings. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01306-8

    Article  Google Scholar 

  96. Girisha, K.G., Rao, K.S., Prasad, C.D.: Slurry erosion resistance of martenistic stainless steel with plasma sprayed Al2O3-40% TiO2 coatings. Mater. Today Proc. 5, 7388–7393 (2018)

    Article  Google Scholar 

  97. Carnicer, V., Orts, M.J., Moreno, R., Sánchez, E.: Microstructure assessment of suspension plasma spraying coatings from multicomponent submicronic Y-TZP/Al2O3/SiC particles. Ceram. Int. 44, 12014–12020 (2018)

    Article  Google Scholar 

  98. Gkomoza, P., Lampropoulos, G.S., Vardavoulias, M., Pantelis, D.I., Karakizis, P.N., Sarafoglou, C.: Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants. Surf. Coat. Technol. 357, 947–956 (2019)

    Article  Google Scholar 

  99. Liu, S.H., Trelles, J.P., Murphy, A.B., Li, L., Zhang, S.L., Yang, G.J., et al.: Numerical simulation of the flow characteristics inside a novel plasma spray torch. J. Phys. D Appl. Phys. 52, 335203 (2019)

    Article  Google Scholar 

  100. Tesar, T., Musalek, R., Medricky, J., Cizek, J.: On growth of suspension plasma-sprayed coatings deposited by high-enthalpy plasma torch. Surf. Coat. Technol. 371, 333–343 (2019)

    Article  Google Scholar 

  101. Wang, Y., Xu, L., Zhu, H., Dong, J., Cheng, P., Zhou, Z.: Spray-inlet microwave plasma torch and low temperature plasma ionization for ambient mass spectrometry of agrochemicals. Anal. Methods 11, 5421–5430 (2019)

    Article  Google Scholar 

  102. Viswanathan, V., Lance, M.J., Haynes, J.A., Pint, B.A., Sampath, S.: Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. Surf. Coat. Technol. 375, 782–792 (2019)

    Article  Google Scholar 

  103. Bychkov, A.S., Kondratiev, A.V.: Criterion-based assessment of performance improvement for aircraft structural parts with thermal spray coatings. J. Superhard Mater. 41, 53–59 (2019)

    Article  Google Scholar 

  104. Yin, X., Bai, Y., Zhou, S.J., Ma, W., Bai, X., Chen, W.D.: Solubility, mechanical and biological properties of fluoridated hydroxyapatite/calcium silicate gradient coatings for orthopedic and dental applications. J. Therm. Spray Technol. 29, 471–488 (2020)

    Article  Google Scholar 

  105. Sam, M., Jojith, R., Radhika, N.: Progression in manufacturing of functionally graded materials and impact of thermal treatment—a critical review. J. Manuf. Process. 68, 1339–1377 (2021)

    Article  Google Scholar 

  106. Koppad, P.G., Ramesh, M., Joladarashi, S., Aruna, S., Reddy, N.C., Siddaraju, C.: Gaseous Phase Processing Techniques for Functionally Graded Materials. Functionally Graded Materials (FGMs), pp. 49–76. CRC Press, Boca Raton (2021)

    Book  Google Scholar 

  107. Prashar, G., Vasudev, H.: Thermal sprayed composite coatings for biomedical implants: a brief review. J. Therm. Spray Eng. 2, 50–55 (2020)

    Article  Google Scholar 

  108. Ghadami, F., Aghdam, A.S.R., Ghadami, S.: Preparation, characterization and oxidation behavior of CeO2-gradient NiCrAlY coatings applied by HVOF thermal spraying process. Ceram. Int. 46, 20500–20509 (2020)

    Article  Google Scholar 

  109. Gang, W., Caiqi, Z.: Experimental and Theoretical Study on the Bearing Capacity of FGC Joints for Single-Layer Aluminium Alloy Lattice Shell Structures. Structure, pp. 2445–2458. Elsevier, Amsterdam (2021)

    Google Scholar 

  110. Guduri, B., Batra, R.C.: Adaptive control of the atmospheric plasma spray process for functionally graded thermal barrier coatings. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/6852494

    Article  Google Scholar 

  111. Liu, H., Egbe, K.J.I., Wang, H., Matin Nazar, A., Jiao, P., Zhu, R.: A numerical study on 3D printed cementitious composites mixes subjected to axial compression. Materials 14, 6882 (2021)

    Article  Google Scholar 

  112. Petrova, V., Schmauder, S.: Thermal fracture resistance of functionally graded thermal barrier coatings with systems of multiple cracks. Application of rule of mixtures. Procedia Struct. Integr. 42, 1145–1152 (2022)

    Article  Google Scholar 

  113. Wang, Z., Maruyama, K., Narita, F.: A novel manufacturing method and structural design of functionally graded piezoelectric composites for energy-harvesting. Mater. Des. 214, 110371 (2022)

    Article  Google Scholar 

  114. Moustafa, E.B., AbuShanab, W.S., Youness, R.A., Taha, M.A.: Improved mechanical properties of Cu8Ni4Sn alloy as functionally graded composites with preserving its thermal and electrical properties. Materi. Chem. Phys. 292, 126778 (2022)

    Article  Google Scholar 

  115. Yazhini, E., Chithra, R.: Performance study of fibre reinforced functionally graded concrete pipes. Constr. Build. Mater. 344, 128224 (2022)

    Article  Google Scholar 

  116. Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K.K., Linul, E., et al.: Processing and Advancements in the development of thermal barrier coatings: a review. Coatings 12, 1318 (2022)

    Article  Google Scholar 

  117. Petrova, V., Schmauder, S., Georgiadis, A.J.C.: Thermal fracture of functionally graded coatings with systems of cracks: application of a model based on the rule of mixtures. Ceramics 6, 255–264 (2023)

    Article  Google Scholar 

  118. Vasiliev, A.S., Volkov, S.S., Aizikovich, S.M.: Hot indentation of a FGM-coated thermoelastic half-space by a conical punch: approximated analytical solution of the contact problem. Compos. Struct. 309, 116612 (2023)

    Article  Google Scholar 

  119. Liu, L., Wang, S., Zhang, B., Jiang, G., Liu, H., Yang, J., et al.: Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review. J. Manuf. Process. 97, 12–34 (2023)

    Article  Google Scholar 

  120. Iqbal, A., Moskal, G., Głowacka, H.M., Pawlik, T., Cavalerio, A.: Phase decompositions of Gd2Zr2O7+8YSZ TBC systems under the condition of long-term high-temperature oxidation. Surf. Coat. Technol. 462, 129471 (2023)

    Article  Google Scholar 

  121. Singh, H., Kumar, R., Prakash, C., Singh, S.: HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications. Mater. Today Proc. 50, 612–628 (2022)

    Article  Google Scholar 

  122. Prakash, C., Singh, S., Singh, M., Gupta, M.K., Mia, M., Dhanda, A.: Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms. Int. J. Adv. Manuf. Technol. 101, 1107–1123 (2019)

    Article  Google Scholar 

  123. Singh, S., Prakash, C., Ramakrishna, S.: Three-dimensional printing in the fight against novel virus COVID-19: technology helping society during an infectious disease pandemic. Technol. Soc. 62, 101305 (2020)

    Article  Google Scholar 

  124. Prashar, G., Vasudev, H.: Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings. Surf. Coat. Technol. 439, 128450 (2022)

    Article  Google Scholar 

  125. Prakash, C., Singh, G., Singh, S., Linda, W.L., Zheng, H.Y., Ramakrishna, S., Narayan, R.: Mechanical reliability and in vitro bioactivity of 3D-printed porous polylactic acid-hydroxyapatite scaffold. J. Mater. Eng. Perform. 30, 4946–4956 (2021)

    Article  Google Scholar 

  126. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kov. Mater. 56(1), 55–63 (2018)

    Google Scholar 

  127. Singh, P., Bansal, A., Vasudev, H., Singh, P.: In situ surface modification of stainless steel with hydroxyapatite using microwave heating. Surf. Topogr. Metrol. Prop. 9, 035053 (2021)

    Article  Google Scholar 

  128. Prakash, C., Singh, S., Basak, A., Królczyk, G., Pramanik, A., Lamberti, L., Pruncu, C.I.: Processing of Ti50Nb50−xHAx composites by rapid microwave sintering technique for biomedical applications. J. Mater. Res. Technol. 9, 242–252 (2020)

    Article  Google Scholar 

  129. Prakash, C., Nagarajan, R.: Outburst susceptibility assessment of moraine-dammed lakes in Western Himalaya using an analytic hierarchy process. Earth Surf. Proc. Land. 42, 2306–2321 (2017)

    Article  Google Scholar 

  130. Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00956-4

    Article  Google Scholar 

  131. Singh, S., Prakash, C., Antil, P., Singh, R., Królczyk, G., Pruncu, C.I.: Dimensionless analysis for investigating the quality characteristics of aluminium matrix composites prepared through fused deposition modelling assisted investment casting. Materials 12, 1907 (2019)

    Article  Google Scholar 

  132. Singh, M., Vasudev, H., Kumar, R., Science, I.M.: Corrosion and tribological behaviour of BN thin films deposited using magnetron sputtering. Int. J. Surf. Eng. Interdiscip. Mater. Sci. 9(2), 24–39 (2021)

    Google Scholar 

  133. Singh, S., Singh, N., Gupta, M., Prakash, C., Singh, R.: Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyp. J. 25, 152–161 (2019)

    Article  Google Scholar 

  134. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials 13, 2729 (2020)

    Article  Google Scholar 

  135. Antil, P., Kumar- ntil, S., Prakash, C., Krolczyk, G., Pruncu, C.: Multi-objective optimization of drilling parameters for orthopaedic implants. Meas. Control 53, 1902–1910 (2020)

    Article  Google Scholar 

  136. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. (2020). https://doi.org/10.1177/2633366X20963137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Vasudev.

Ethics declarations

Conflict of interest

This article has not been submitted elsewhere for publication and authors do not have any conflict related to this manuscript and presented data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Vasudev, H. & Thakur, L. Applications of numerical modelling techniques in thermal spray coatings: a comprehensive review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01511-5

Keywords

Navigation