Skip to main content

Advertisement

Log in

Are Biologic Treatments a Potential Approach to Wear- and Corrosion-related Problems?

  • Symposium: ABJS Carl T. Brighton Workshop on Implant Wear and Tribocorrosion of Total Joint Replacements
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Where Are We Now?

Biological treatments, defined as any nonsurgical intervention whose primary mechanism of action is reducing the host response to wear and/or corrosion products, have long been postulated as solutions for osteolysis and aseptic loosening of total joint arthroplasties. Despite extensive research on drugs that target the inflammatory, osteoclastic, and osteogenic responses to wear debris, no biological treatment has emerged as an approved therapy. We review the extensive preclinical research and modest clinical research to date, which has led to the central conclusion that the osteoclast is the primary target. We also allude to the significant changes in health care, unabated safety concerns about chronic immunosuppressive/antiinflammatory therapies, industry’s complete lack of interest in developing an intervention for this condition, and the practical issues that have narrowly focused the possibilities for a biologic treatment for wear debris-induced osteolysis.

Where Do We Need to Go?

Based on the conclusions from research, and the economic, regulatory, and practical issues that limit the future directions toward the development of a biologic treatment, there are a few rational approaches that warrant investigation. These largely focus on FDA-approved osteoporosis therapies that target the osteoclast (bisphosphonates and anti-RANK ligand) and recombinant parathyroid hormone (teriparatide) prophylactic treatment to increase osseous integration of the prosthesis to overcome high-risk susceptibility to aseptic loosening. The other roadblock that must be overcome if there is to be an approved biologic therapy to prevent the progression of periprosthetic osteolysis and aseptic loosening is the development of radiological measures that can quantify a significant drug effect in a randomized, placebo-controlled clinical trial. We review the progress of volumetric quantification of osteolysis in animal studies and clinical pilots.

How Do We Get There?

Accepting the aforementioned rigid boundaries, we describe the emergence of repurposing FDA-approved drugs for new indications and public (National Institutes of Health, FDA, Centers for Disease Control and Prevention) and private (universities and drug and device manufactures) partnerships as the future roadmap for clinical translation. In the case of biologic treatments for wear debris-induced osteolysis, this will involve combined federal and industry funding of multicenter clinical trials that will be run by thought leaders at large medical centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arabmotlagh M, Pilz M, Warzecha J, Rauschmann M. Changes of femoral periprosthetic bone mineral density 6 years after treatment with alendronate following total hip arthroplasty. J Orthop Res. 2009;27:183–188.

    Article  PubMed  Google Scholar 

  2. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, Garcia-Hernandez PA, Recknor CP, Einhorn TA, Dalsky GP, Mitlak BH, Fierlinger A, Lakshmanan MC. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2009;25:404–414.

    Article  Google Scholar 

  3. Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81:234–236.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Barra L, Pope JE, Payne M. Real-world anti-tumor necrosis factor treatment in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: cost-effectiveness based on number needed to treat to improve health assessment questionnaire. J Rheumatol. 2009;36:1421–1428.

    Article  PubMed  Google Scholar 

  5. Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med. 2010;363:2396–2405.

    Article  CAS  PubMed  Google Scholar 

  6. Bhandari M, Bajammal S, Guyatt GH, Griffith L, Busse JW, Schunemann H, Einhorn TA. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2005;87:293–301.

    Article  PubMed  Google Scholar 

  7. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–342.

    Article  CAS  PubMed  Google Scholar 

  8. Bragdon CR, Doherty AM, Jasty M, Rubash H, Harris WH. Effect of oral alendronate on net bone ingrowth into canine cementless total hips. J Arthroplasty. 2005;20:258–263.

    Article  PubMed  Google Scholar 

  9. Chen D, Guo Y, Mao X, Zhang X. Inhibition of p38 mitogen-activated protein kinase down-regulates the inflammatory osteolysis response to titanium particles in a murine osteolysis model. Inflammation. 2012;35:1798–1806.

    Article  CAS  PubMed  Google Scholar 

  10. Chen D, Zhang X, Guo Y, Shi S, Mao X, Pan X, Cheng T. MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model. Int J Mol Med. 2012;30:1417–1423.

    PubMed  Google Scholar 

  11. Darowish M, Rahman R, Li P, Bukata SV, Gelinas J, Huang W, Flick LM, Schwarz EM, O’Keefe RJ. Reduction of particle-induced osteolysis by interleukin-6 involves anti-inflammatory effect and inhibition of early osteoclast precursor differentiation. Bone. 2009;45:661–668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Daugaard H, Elmengaard B, Andreassen T, Bechtold J, Lamberg A, Soballe K. Parathyroid hormone treatment increases fixation of orthopedic implants with gap healing: a biomechanical and histomorphometric canine study of porous coated titanium alloy implants in cancellous bone. Calcif Tissue Int. 2011;88:294–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dong L, Wang R, Zhu YA, Wang C, Diao H, Zhang C, Zhao J, Zhang J. Antisense oligonucleotide targeting TNF-alpha can suppress Co-Cr-Mo particle-induced osteolysis. J Orthop Res. 2008;26:1114–1120.

    Article  CAS  PubMed  Google Scholar 

  14. Fang Q, Wang H, Zhu S, Zhu Q. N-acetyl-L-cysteine inhibits wear particle-induced prosthesis loosening. J Surg Res. 2011;168:e163–172.

    Article  CAS  PubMed  Google Scholar 

  15. Friedl G, Radl R, Stihsen C, Rehak P, Aigner R, Windhager R. The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind, controlled trial. J Bone Joint Surg Am. 2009;91:274–281.

    Article  PubMed  Google Scholar 

  16. Geng DC, Xu YZ, Yang HL, Zhu XS, Zhu GM, Wang XB. Inhibition of titanium particle-induced inflammatory osteolysis through inactivation of cannabinoid receptor 2 by AM630. J Biomed Mater Res A. 2010;95:321–326.

    Article  CAS  PubMed  Google Scholar 

  17. Green JM, Hallab NJ, Liao YS, Narayan V, Schwarz EM, Xie C. Anti-oxidation treatment of ultra high molecular weight polyethylene components to decrease periprosthetic osteolysis: evaluation of osteolytic and osteogenic properties of wear debris particles in a murine calvaria model. Curr Rheumatol Rep. 2013;15:325.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hansson U, Toksvig-Larsen S, Ryd L, Aspenberg P. Once-weekly oral medication with alendronate does not prevent migration of knee prostheses: a double-blind randomized RSA study. Acta Orthop. 2009;80:41–45.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kauther MD, Bachmann HS, Neuerburg L, Broecker-Preuss M, Hilken G, Grabellus F, Koehler G, von Knoch M, Wedemeyer C. Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis. BMC Musculoskelet Disord. 2011;12:186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Keystone E. Recent concepts in the inhibition of radiographic progression with biologics. Curr Opin Rheumatol. 2009;21:231–237.

    Article  PubMed  Google Scholar 

  21. Landgraeber S, Jaeckel S, Loer F, Wedemeyer C, Hilken G, Canbay A, Totsch M, von Knoch M. Pan-caspase inhibition suppresses polyethylene particle-induced osteolysis. Apoptosis. 2009;14:173–181.

    Article  CAS  PubMed  Google Scholar 

  22. Li YF, Li XD, Bao CY, Chen QM, Zhang H, Hu J. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1–34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int. 2013;24:1063–1071.

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Virdi AS, Sena K, Sumner DR. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model. Arthritis Rheum. 2012;64:4012–4020.

    Article  CAS  PubMed  Google Scholar 

  24. Ma T, Ren PG, Larsen DM, Suenaga E, Zilber S, Genovese M, Smith RL, Goodman SB. Efficacy of a p38 mitogen activated protein kinase inhibitor in mitigating an established inflammatory reaction to polyethylene particles in vivo. J Biomed Mater Res A. 2009;89:117–123.

    CAS  PubMed  Google Scholar 

  25. Mao X, Pan X, Cheng T, Zhang X. Therapeutic potential of the proteasome inhibitor Bortezomib on titanium particle-induced inflammation in a murine model. Inflammation. 2011;35:905–912.

    Article  Google Scholar 

  26. Mao X, Pan X, Peng X, Cheng T, Zhang X. Inhibition of titanium particle-induced inflammation by the proteasome inhibitor bortezomib in murine macrophage-like RAW 264.7 cells. Inflammation. 2012;35:1411–1418.

    Article  CAS  PubMed  Google Scholar 

  27. Markel DC, Zhang R, Shi T, Hawkins M, Ren W. Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis. Inflamm Res. 2009;58:413–421.

    Article  CAS  PubMed  Google Scholar 

  28. Mediero A, Frenkel SR, Wilder T, He W, Mazumder A, Cronstein BN. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med. 2012;4:135–165.

  29. Nich C, Rao AJ, Valladares RD, Li C, Christman JE, Antonios JK, Yao Z, Zwingenberger S, Petite H, Hamadouche M, Goodman SB. Role of direct estrogen receptor signaling in wear particle-induced osteolysis. Biomaterials. 2013;34:641–650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Niu S, Cao X, Zhang Y, Zhu Q, Zhu J. The inhibitory effect of alendronate-hydroxyapatite composite coating on wear debris-induced peri-implant high bone turnover. J Surg Res. 2012;179:e107–115.

    Article  PubMed  Google Scholar 

  31. Padhi D, Allison M, Kivitz AJ, Gutierrez MJ, Stouch B, Wang C, Jang G. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: A randomized, double-blind, placebo-controlled study. J Clin Pharmacol. 2013;54:168–178.

    Article  Google Scholar 

  32. Prieto-Alhambra D, Javaid MK, Judge A, Murray D, Carr A, Cooper C, Arden NK. Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ. 2011;343:d7222.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res. 2007;454:251–261.

    Article  PubMed  Google Scholar 

  34. Qu S, Bai Y, Liu X, Fu R, Duan K, Weng J. Study on in vitro release and cell response to alendronate sodium-loaded ultrahigh molecular weight polyethylene loaded with alendronate sodium wear particles to treat the particles-induced osteolysis. J Biomed Mater Res A. 2012;101:394–403.

    PubMed  Google Scholar 

  35. Rao AJ, Nich C, Dhulipala LS, Gibon E, Valladares R, Zwingenberger S, Smith RL, Goodman SB. Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J Biomed Mater Res A. 2012;101:1926–1934.

    PubMed Central  PubMed  Google Scholar 

  36. Ren W, Zhang R, Hawkins M, Shi T, Markel DC. Efficacy of periprosthetic erythromycin delivery for wear debris-induced inflammation and osteolysis. Inflamm Res. 2010;59:1091–1097.

    Article  CAS  PubMed  Google Scholar 

  37. Roelofs AJ, Thompson K, Gordon S, Rogers MJ. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12:6222s–6230s.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz EM. What potential biologic treatments are available for osteolysis? J Am Acad Orthop Surg. 2008;16 Suppl 1:S72–75.

    PubMed  Google Scholar 

  39. Schwarz EM, Campbell D, Totterman S, Boyd A, O’Keefe RJ, Looney RJ. Use of volumetric computerized tomography as a primary outcome measure to evaluate drug efficacy in the prevention of peri-prosthetic osteolysis: a 1-year clinical pilot of etanercept vs. placebo. J Orthop Res. 2003;21:1049–1055.

    Article  CAS  PubMed  Google Scholar 

  40. Scott DF, Woltz JN, Smith RR. Effect of zoledronic acid on reducing femoral bone mineral density loss following total hip arthroplasty: preliminary results of a prospective randomized trial. J Arthroplasty. 2012;28:671–675.

    Article  PubMed  Google Scholar 

  41. Scott DL, Kingsley GH. Tumor necrosis factor inhibitors for rheumatoid arthritis. N Engl J Med. 2006;355:704–712.

    Article  CAS  PubMed  Google Scholar 

  42. Shin DK, Kim MH, Lee SH, Kim TH, Kim SY. Inhibitory effects of luteolin on titanium particle-induced osteolysis in a mouse model. Acta Biomater. 2012;8:3524–3531.

    Article  CAS  PubMed  Google Scholar 

  43. Singh JA, Wells GA, Christensen R, Tanjong Ghogomu E, Maxwell L, Macdonald JK, Filippini G, Skoetz N, Francis D, Lopes LC, Guyatt GH, Schmitt J, La Mantia L, Weberschock T, Roos JF, Siebert H, Hershan S, Lunn MP, Tugwell P, Buchbinder R. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011;2:CD008794.

    PubMed  Google Scholar 

  44. Skoldenberg OG, Salemyr MO, Boden HS, Ahl TE, Adolphson PY. The effect of weekly risedronate on periprosthetic bone resorption following total hip arthroplasty: a randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2011;93:1857–1864.

    Article  PubMed  Google Scholar 

  45. Talmo CT, Shanbhag AS, Rubash HE. Nonsurgical management of osteolysis: challenges and opportunities. Clin Orthop Relat Res. 2006;453:254–264.

    Article  PubMed  Google Scholar 

  46. Taylor PC. Anti-cytokines and cytokines in the treatment of rheumatoid arthritis. Curr Pharm Des. 2003;9:1095–1106.

    Article  CAS  PubMed  Google Scholar 

  47. Thillemann TM, Pedersen AB, Mehnert F, Johnsen SP, Soballe K. Postoperative use of bisphosphonates and risk of revision after primary total hip arthroplasty: a nationwide population-based study. Bone. 2010;46:946–951.

    Article  CAS  PubMed  Google Scholar 

  48. Trevisan C, Nava V, Mattavelli M, Parra CG. Bisphosphonate treatment for osteolysis in total hip arthroplasty. A report of four cases. Clin Cases Miner Bone Metab. 2013;10:61–64.

  49. Trevisan C, Ortolani S, Romano P, Isaia G, Agnese L, Dallari D, Grappiolo G, Cherubini R, Massari L, Bianchi G. Decreased periprosthetic bone loss in patients treated with clodronate: a 1-year randomized controlled study. Calcif Tissue Int. 2010;86:436–446.

    Article  CAS  PubMed  Google Scholar 

  50. Tsutsumi R, Hock C, Bechtold CD, Proulx ST, Bukata SV, Ito H, Awad HA, Nakamura T, O’Keefe RJ, Schwarz EM. Differential effects of biologic versus bisphosphonate inhibition of wear debris-induced osteolysis assessed by longitudinal micro-CT. J Orthop Res. 2008;26:1340–1346.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Tuan RS, Lee FY, Konttinen T, Wilkinson JM, Smith RL. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg. 2008;16(Suppl 1):S42–S48.

    PubMed Central  PubMed  Google Scholar 

  52. von Knoch F, Wedemeyer C, Heckelei A, Saxler G, Hilken G, Brankamp J, Sterner T, Landgraeber S, Henschke F, Loer F, von Knoch M. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials. 2005;26:5783–5789.

    Article  Google Scholar 

  53. Wang CJ, Wang JW, Weng LH, Hsu CC, Huang CC, Chen HS. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg Am. 2003;85:2121–2126.

    PubMed  Google Scholar 

  54. Wang Y, Wu NN, Hu M, Mou YQ, Li RD, Chen L, He BC, Deng ZL. Inhibitory effect of adenovirus-mediated siRNA-targeting BMPR-IB on UHMWPE-induced bone destruction in the murine air pouch model. Connect Tissue Res. 2012;53:528–534.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Wu NN, Mou YQ, Chen L, Deng ZL. Inhibitory effects of recombinant IL-4 and recombinant IL-13 on UHMWPE-induced bone destruction in the murine air pouch model. J Surg Res. 2012;180:e73–81.

    Article  PubMed  Google Scholar 

  56. Wilkinson JM, Little DG. Bisphosphonates in orthopedic applications. Bone. 2011;49:95–102.

    Article  CAS  PubMed  Google Scholar 

  57. Yamanaka Y, Clohisy JC, Ito H, Matsuno T, Abu-Amer Y. Blockade of JNK and NFAT pathways attenuates orthopedic particle-stimulated osteoclastogenesis of human osteoclast precursors and murine calvarial osteolysis. J Orthop Res. 2012;31:67–72.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Yu X, Zhao X, Wu T, Zhou Z, Gao Y, Wang X, Zhang CQ. Inhibiting wear particles-induced osteolysis with naringin. Int Orthop. 2012;37:137–143.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Zhang W, Peng X, Cheng T, Zhang X. Vascular endothelial growth factor gene silencing suppresses wear debris-induced inflammation. Int Orthop. 2011;35:1883–1888.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Zhang W, Zhao H, Peng X, Cheng T, Zhang X. Low-dose captopril inhibits wear debris-induced inflammatory osteolysis. J Int Med Res. 2011;39:798–804.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao X, Cai XZ, Shi ZL, Zhu FB, Zhao GS, Yan SG. Low-intensity pulsed ultrasound (LIPUS) may prevent polyethylene induced periprosthetic osteolysis in vivo. Ultrasound Med Biol. 2012;38:238–246.

    Article  PubMed  Google Scholar 

  62. Zhu FB, Cai XZ, Yan SG, Zhu HX, Li R. The effects of local and systemic alendronate delivery on wear debris-induced osteolysis in vivo. J Orthop Res. 2010;28:893–899.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Timothy Wright and Stuart Goodman and our colleagues who participated in the ABKS CT Brighton Workshop on Wear and Tribocorrosion and provided critical insights that were incorporated into this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Schwarz PhD.

Additional information

One of the authors (EMS) certifies that he or she, or a member of his or her immediate family, has received or may receive payments or benefits, during the study period, an amount of USD (note less than USD 10,000), from Amgen Inc (Thousand Oaks, CA, USA), and an amount of USD (USD 10,000 to USD 100,000) from Lilly Inc (Indianapolis, IN, USA).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

This work was performed at Stanford University, Stanford, CA, USA, and University of Rochester, Rochester, NY, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R.L., Schwarz, E.M. Are Biologic Treatments a Potential Approach to Wear- and Corrosion-related Problems?. Clin Orthop Relat Res 472, 3740–3746 (2014). https://doi.org/10.1007/s11999-014-3765-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3765-9

Keywords

Navigation