Skip to main content

Advertisement

Log in

Efficacy of periprosthetic erythromycin delivery for wear debris-induced inflammation and osteolysis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

We have reported that oral erythromycin (EM) inhibits periprosthetic tissue inflammation in a group of patients with aseptic loosening. The purpose of this study was to assess the efficacy of local, periprosthetic EM delivery in a rat model.

Methods

Uncoated Ti pins were press-fit into the right tibia of fourteen Sprague–Dawley rats following an intramedullar injection of UHMWPE (ultra high molecular weight polyethylene) particles. Revision surgeries were performed 2 months after the primary surgery. EM was applied to the Peri-Apatite™ (PA) layer of the titanium (Ti) pins. The previously implanted Ti pins were withdrawn and replaced with Ti pins coated either with (n = 7) or without (n = 7) EM. The rats were killed 1 month after “revision surgery”. The EM efficacy was evaluated by (MicroCT) μCT and histology.

Results

μCT analysis showed that bone volume percentage (BV/TV) was significantly higher in the EM-treated group compared to the untreated group (p < 0.05). Histological analysis showed that EM treatment inhibits UHMWPE particle-induced periprosthetic tissue inflammation compared to the untreated group.

Conclusion

This study demonstrated that periprosthetic EM delivery reduced periprosthetic inflammation and improved the quality of surrounding bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EM:

Erythromycin

PA:

Peri-Apatite™

Ti:

Titanium

S. aureus :

Staphylococcus aureus

References

  1. Berry DJ, Harmsen WS, Cabanela ME, Morrey BF. Twenty-five-year survivorship of two thousand consecutive primary charnley total hip replacements : factors affecting survivorship of acetabular and femoral components. J Bone Joint Surg Am. 2002;84:171–7.

    PubMed  Google Scholar 

  2. Keener JD, Callaghan JJ, Goetz DD, et al. Twenty-five-year results after Charnley total hip arthroplasty in patients less than fifty years old: a concise follow-up of a previous report. J Bone Joint Surg Am. 2003;85-A:1066–72.

    PubMed  Google Scholar 

  3. Fender D, Harper WM, Gregg PJ. Outcome of Charnley total hip replacement across a single health region in England: the results at five years from a regional hip register [see comments]. J Bone Joint Surg Br. 1999;81:577–81.

    Article  CAS  PubMed  Google Scholar 

  4. Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng [H]. 2000;214:21–37.

    CAS  Google Scholar 

  5. Greenfield EM, Bi Y, Ragab AA, et al. The role of osteoclast differentiation in aseptic loosening. J Orthop Res. 2002;20:1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Merkel KD, Erdmann JM, McHugh KP, et al. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol. 1999;154:203–10.

    CAS  PubMed  Google Scholar 

  7. Stea S, Visentin M, Granchi D, et al. Wear debris and cytokine production in the interface membrane of loosened prostheses. J Biomater Sci Polym Ed. 1999;10:247–57.

    Article  CAS  PubMed  Google Scholar 

  8. Maloney WJ, Smith RL, Schmalzried TP, et al. Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement. J Bone Joint Surg Am. 1995;77:1301–10.

    CAS  PubMed  Google Scholar 

  9. Sethi RK, Neavyn MJ, Rubash HE, Shanbhag AS. Macrophage response to cross-linked and conventional UHMWPE. Biomaterials. 2003;24:2561–73.

    Article  CAS  PubMed  Google Scholar 

  10. Wooley PH, Schwarz EM. Aseptic loosening. Gene Ther. 2004;11:402–7.

    Article  CAS  PubMed  Google Scholar 

  11. Schwarz EM. What potential biologic treatments are available for osteolysis? J Am Acad Orthop Surg. 2008;16(Suppl 1):S72–5.

    PubMed  Google Scholar 

  12. Pollice PF, Rosier RN, Looney RJ, et al. Oral pentoxifylline inhibits release of tumor necrosis factor-alpha from human peripheral blood monocytes: a potential treatment for aseptic loosening of total joint components. J Bone Joint Surg Am. 2001;83-A:1057–61.

    CAS  PubMed  Google Scholar 

  13. Childs LM, Goater JJ, O’Keefe RJ, Schwarz EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16:338–47.

    Article  CAS  PubMed  Google Scholar 

  14. Yatsunami J, Hayashi S. Fourteen-membered ring macrolides as anti-angiogenic compounds. Anticancer Res. 2001;21:4253–8.

    CAS  PubMed  Google Scholar 

  15. Cervin A. The anti-inflammatory effect of erythromycin and its derivatives, with special reference to nasal polyposis and chronic sinusitis. Acta Otolaryngol. 2001;121:83–92.

    Article  CAS  PubMed  Google Scholar 

  16. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31:12–20.

    Article  CAS  PubMed  Google Scholar 

  17. Nagai H, Shishido H, Yoneda R, et al. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration. 1991;58:145–9.

    Article  CAS  PubMed  Google Scholar 

  18. Koyama H, Geddes DM. Erythromycin and diffuse panbronchiolitis. Thorax. 1997;52:915–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157:1829–32.

    CAS  PubMed  Google Scholar 

  20. Sakito O, Kadota J, Kohno S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration. 1996;63:42–8.

    Article  CAS  PubMed  Google Scholar 

  21. Dette GA, Knothe H, Kellner HM. Whole body tissue distribution of [14C]-erythromycin in the guinea pig. an autoradiographic study. Arzneimittelforschung. 1987;37:524–7.

    CAS  PubMed  Google Scholar 

  22. Cuffini AM, Tullio V, Cimino F, Carlone NA. Comparative effects of roxithromycin and erythromycin on cellular immune functions in vitro. 1. Uptake of 3H-macrolides by human macrophages. Microbios. 1989;57:167–78.

    CAS  PubMed  Google Scholar 

  23. Ren WP, Li XY, Chen BD, Wooley PH. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NFkB activity. J Orthop Res. 2004;22:21–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ren WP, Bin W, Mayton L, Wooley PH. Erythromycin (EM) inhibits wear debris-induced inflammatory osteolysis in a murine model. J Orthop Res. 2006;24:280–90.

    Article  CAS  PubMed  Google Scholar 

  25. Ren W, Blasier R, Peng X, et al. Effect of oral erythromycin therapy in patients with aseptic loosening of joint prostheses. Bone. 2009;44:671–7.

    Article  CAS  PubMed  Google Scholar 

  26. Stephenson PK, Freeman MA, Revell PA, et al. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6:51–8.

    Article  CAS  PubMed  Google Scholar 

  27. Karabatsos B, Myerthall SL, Fornasier VL, et al. Osseointegration of hydroxyapatite porous-coated femoral implants in a canine model. Clin Orthop Relat Res. 2001;392:442–9.

    Article  PubMed  Google Scholar 

  28. Hansson U, Ryd L, Toksvig-Larsen S. A randomised RSA study of Peri-Apatite HA coating of a total knee prosthesis. Knee. 2008;15:211–6.

    Article  PubMed  Google Scholar 

  29. Zhang R, An Y, Toth CA, et al. Osteogenic protein-1 enhances osseointegration of titanium implants coated with peri-apatite in rabbit femoral defect. J Biomed Mater Res B Appl Biomater. 2004;71:408–13.

    Article  PubMed  Google Scholar 

  30. Zhang R, Xu D, Landeryou T, et al. Ectopic bone formation using osteogenic protein-1 carried by a solution precipitated hydroxyapatite. J Biomed Mater Res A. 2004;71:412–8.

    Article  PubMed  Google Scholar 

  31. Wooley PH, Morren R, Andary J, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23:517–26.

    Article  CAS  PubMed  Google Scholar 

  32. Ren WP, Yang S, Wooley PH. A novel murine model of orthopaedic wear debris-associated osteolysis. Scand J Rheumatol. 2004;33:349–57.

    Article  CAS  PubMed  Google Scholar 

  33. Allen M, Brett F, Millett P, Rushton N. The effects of particulate polyethylene at a weight-bearing bone-implant interface A study in rats. J Bone Joint Surg Br. 1996;78:32–7.

    CAS  PubMed  Google Scholar 

  34. Morawietz L, Classen RA, Schroder JH, et al. Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol. 2006;59:591–7.

    Article  CAS  PubMed  Google Scholar 

  35. al Saffar N, Revell PA. Pathology of the bone-implant interfaces. J Long Term Eff Med Implants. 1999;9:319–47.

    CAS  PubMed  Google Scholar 

  36. Jones LC, Frondoza C, Hungerford DS. Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J Biomed Mater Res. 1999;48:889–98.

    Article  CAS  PubMed  Google Scholar 

  37. Yang SY, Ren W, Park Y, et al. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials. 2002;23:3535–43.

    Article  CAS  PubMed  Google Scholar 

  38. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–10.

    Article  CAS  PubMed  Google Scholar 

  39. Naber CK. Future strategies for treating Staphylococcus aureus bloodstream infections. Clin Microbiol Infect. 2008;14(Suppl 2):26–34.

    Article  CAS  PubMed  Google Scholar 

  40. Stigter M, Bezemer J, De GK, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release. 2004;99:127–37.

    Article  CAS  PubMed  Google Scholar 

  41. Stigter M, De GK, Layrolle P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials. 2002;23:4143–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an institutional research grant from Stryker Orthopedics (Mahwah, NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ren.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Zhang, R., Hawkins, M. et al. Efficacy of periprosthetic erythromycin delivery for wear debris-induced inflammation and osteolysis. Inflamm. Res. 59, 1091–1097 (2010). https://doi.org/10.1007/s00011-010-0229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0229-x

Keywords

Navigation