Skip to main content
Log in

Investigation of cellulose nanocrystals (CNC) and cellulose nanofibers (CNF) as thermal barrier and strengthening agents in pigment-based paper coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In response to food packaging improvements, this study investigates changes in mechanical and thermal barrier properties of pigment-based paper coatings when cellulose nanocrystals (CNC) and cellulose nanofibers (CNF) are added to the formulation. Stable dispersions of all coating components were formed between pH 7–9 (zeta potential > |30 mV|) except CNF, which favored stable dispersions at higher pH. Hydrodynamic diameters (Dh) of CNC and CNF decreased when interacting with calcium carbonate ions (Ca2+ and CO32-); however, latex binder and dispersant diameters were unaffected by the presence of CaCO3 in solution. Thermal barrier performance was quantified by measuring ΔT across coated samples, with and without nanoparticle additives. Both CNC and CNF additives significantly contributed to the ΔT measured, with the best result recorded for 2 wt% CNF, pH 7, and a drying rate of 25 °C/min. This sample recorded 37 ± 6 °C higher than the ΔT for baseline coatings (without additive). Dynamic mechanical analysis (DMA) showed a higher storage modulus for all samples containing CNC and/or CNF compared with the baseline coating, suggesting a material with greater resistance to deformation from applied load. Higher dissipation energy was also observed; however, lower tan delta values suggest improved mechanical properties with both additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hubbe, MA, Ferrer, A, Tyagi, P, Yin, Y, Salas, C, Pal, L, Rojas, OJ, “Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review.” BioResour., 12 (1) 2142–2233 (2017)

    Article  Google Scholar 

  2. Ioelovich, M, “Isophase Transitions of Cellulos–A Short Review.” Athens J. Sci., 3 (4) 309–322. https://doi.org/10.30958/ajs.3-4-4 (2016)

    Article  Google Scholar 

  3. Napper, IE, Thompson, RC, “Environmental Deterioration of Biodegradable, Oxo-Biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period.” Environ. Sci. Technol., 53 (9) 4775–4783. https://doi.org/10.1021/acs.est.8b06984 (2019)

    Article  CAS  Google Scholar 

  4. Jun, D, Guomin, Z, Mingzhu, P, Leilei, Z, Dagang, L, Rui, Z, “Crystallization and Mechanical Properties of Reinforced PHBV Composites Using Melt Compounding: Effect of CNCs and CNFs.” Carbohydr. Polym., 168 255–262. https://doi.org/10.1016/j.carbpol.2017.03.076 (2017)

    Article  CAS  Google Scholar 

  5. Mtibe, A, Linganiso, LZ, Mathew, AP, Oksman, K, John, MJ, Anandjiwala, RD, “A Comparative Study on Properties of Micro and Nanopapers Produced from Cellulose and Cellulose Nanofibres.” Carbohydr. Polym., 118 1–8. https://doi.org/10.1016/j.carbpol.2014.10.007 (2015)

    Article  CAS  Google Scholar 

  6. Handbook of Nanocellulose and Cellulose Nanocomposites. Kargarzadeh, H, Ahmad, I, Thomas, S, Dufresne, A, Eds. ISBN: 978-3-527-33866-5, Wiley-VCH: Weinheim (2017)

  7. Zhang, W, Zhang, Y, Cao, J, Jiang, W, “Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive.” Int. J. Biol. Macromol., 166 288–296. https://doi.org/10.1016/j.ijbiomac.2020.10.185 (2021)

    Article  CAS  Google Scholar 

  8. Yildirim, N, Shaler, S, “A Study on Thermal and Nanomechanical Performance of Cellulose Nanomaterials (CNs).” Materials, 10 (7) 718. https://doi.org/10.3390/ma10070718 (2017)

    Article  CAS  Google Scholar 

  9. Benhamou, K, Kaddami, H, Magnin, A, Dufresne, A, Ahmad, A, “Bio-Based Polyurethane Reinforced with Cellulose Nanofibers: A Comprehensive Investigation on the Effect of Interface.” Carbohydr. Polym., 122 202–211. https://doi.org/10.1016/j.carbpol.2014.12.081 (2015)

    Article  CAS  Google Scholar 

  10. Kargarzadeh, H, Mariano, M, Huang, J, Lin, N, Ahmad, I, Dufresne, A, Thomas, S, “Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review.” Polymer, 132 368–393. https://doi.org/10.1016/j.polymer.2017.09.043 (2017)

    Article  CAS  Google Scholar 

  11. Sacui, IA, Nieuwendaal, RC, Burnett, DJ, Stranick, SJ, Jorfi, M, Weder, C, Foster, EJ, Olsson, RT, Gilman, JW, “Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods.” ACS Appl. Mater. Interfaces, 6 (9) 6127–6138. https://doi.org/10.1021/am500359f (2014)

    Article  CAS  Google Scholar 

  12. Ghasemi, S, Tajvidi, M, Bousfield, DW, Gardner, DJ, “Reinforcement of Natural Fiber Yarns by Cellulose Nanomaterials: A Multi-Scale Study.” Ind. Crops Prod., 111 471–481. https://doi.org/10.1016/j.indcrop.2017.11.016 (2018)

    Article  CAS  Google Scholar 

  13. Sun, X, Wu, Q, Zhang, X, Ren, S, Lei, T, Li, W, Xu, G, Zhang, Q, “Nanocellulose Films with Combined Cellulose Nanofibers and Nanocrystals: Tailored Thermal.” Opt. Mech. Prop. Cellul., 25 (2) 1103–1115. https://doi.org/10.1007/s10570-017-1627-9 (2018)

    Article  CAS  Google Scholar 

  14. Roy, S, Zhai, L, Van Hai, L, Kim, JW, Park, JH, Kim, HC, Kim, J, “One-Step Nanocellulose Coating Converts Tissue Paper into an Efficient Separation Membrane.” Cellul., 25 (9) 4871–4886. https://doi.org/10.1007/s10570-018-1945-6 (2018)

    Article  CAS  Google Scholar 

  15. Mazhari Mousavi, SM, Afra, E, Tajvidi, M, Bousfield, DW, Dehghani-Firouzabadi, M, “Cellulose Nanofiber/Carboxymethyl Cellulose Blends as an Efficient Coating to Improve the Structure and Barrier Properties of Paperboard.” Cellul., 24 (7) 3001–3014. https://doi.org/10.1007/s10570-017-1299-5 (2017)

    Article  CAS  Google Scholar 

  16. Jia, M, Zhang, X, Weng, J, Zhang, J, Zhang, M, “Protective Coating of Paper Works: ZnO/Cellulose Nanocrystal Composites and Analytical Characterization.” J. Cult. Herit., 38 64–74. https://doi.org/10.1016/j.culher.2019.02.006 (2019)

    Article  Google Scholar 

  17. Kumar, V, Koppolu, VR, Bousfield, D, Toivakka, M, “Substrate Role in Coating of Microfibrillated Cellulose Suspensions.” Cellul., 24 (3) 1247–1260. https://doi.org/10.1007/s10570-017-1201-5 (2017)

    Article  CAS  Google Scholar 

  18. Liu, C, Du, H, Dong, L, Wang, X, Zhang, Y, Yu, G, Li, B, Mu, X, Peng, H, Liu, H, “Properties of Nanocelluloses and Their Application as Rheology Modifier in Paper Coating.” Ind. Eng. Chem. Res., 56 (29) 8264–8273. https://doi.org/10.1021/acs.iecr.7b01804 (2017)

    Article  CAS  Google Scholar 

  19. Morsy, FA, El-Sherbiny, S, “Mechanical Properties of Coated Paper: Influence of Coating Properties and Pigment Blends.” J. Mater. Sci., 39 7327–7332 (2004)

    Article  CAS  Google Scholar 

  20. Walker, LC, “Dynamic Mechanical Spectroscopy of Paper.” Thermochim. Acta, 367–368 407–414 (2000)

    Google Scholar 

  21. Lavoine, N, Bras, J, Desloges, I, “Mechanical and Barrier Properties of Cardboard and 3D Packaging Coated with Microfibrillated Cellulose.” J. Appl. Polym. Sci., 131 (8). https://doi.org/10.1002/app.40106 (2014)

  22. Hutton-Prager, B, Khan, MM, Gentry, C, Knight, CB, Al-Abri, AKA, “Thermal Barrier Enhancement of Calcium Carbonate Coatings with Nanoparticle Additives, and Their Effect on Hydrophobicity.” Cellul., 26 (8) 4865–4880. https://doi.org/10.1007/s10570-019-02426-9 (2019)

    Article  CAS  Google Scholar 

  23. Reverdy, C, Belgacem, N, Moghaddam, MS, Sundin, M, Swerin, A, Bras, J, “One-Step Superhydrophobic Coating Using Hydrophobized Cellulose Nanofibrils.” Colloids Surf. Physicochem. Eng. Asp., 544 152–158. https://doi.org/10.1016/j.colsurfa.2017.12.059 (2018)

    Article  CAS  Google Scholar 

  24. Tarrés, Q, Delgado-Aguilar, M, Pèlach, MA, González, I, Boufi, S, Mutjé, P, “Remarkable Increase of Paper Strength by Combining Enzymatic Cellulose Nanofibers in Bulk and TEMPO-Oxidized Nanofibers as Coating.” Cellul., 23 (6) 3939–3950. https://doi.org/10.1007/s10570-016-1073-0 (2016)

    Article  CAS  Google Scholar 

  25. Gerstner, P, Paltakari, J, Gane, PAC, “Measurement and Modelling of Heat Transfer in Paper Coating Structures.” J. Mater. Sci., 44 (2) 483–491. https://doi.org/10.1007/s10853-008-3099-7 (2009)

    Article  CAS  Google Scholar 

  26. Wedin, P, Martinez, CJ, Lewis, JA, Daicic, J, Bergström, L, “Stress Development During Drying of Calcium Carbonate Suspensions Containing Carboxymethylcellulose and Latex Particles.” J. Colloid Interface Sci., 272 (1) 1–9. https://doi.org/10.1016/j.jcis.2003.12.030 (2004)

    Article  CAS  Google Scholar 

  27. Yu, J, Lei, M, Cheng, B, Zhao, X, “Effects of PAA Additive and Temperature on Morphology of Calcium Carbonate Particles.” J. Solid State Chem., 177 (3) 681–689. https://doi.org/10.1016/j.jssc.2003.08.017 (2004)

    Article  CAS  Google Scholar 

  28. Matahwa, H, Ramiah, V, Sanderson, RD, “Calcium Carbonate Crystallization in the Presence of Modified Polysaccharides and Linear Polymeric Additives.” J. Cryst. Growth, 310 (21) 4561–4569. https://doi.org/10.1016/j.jcrysgro.2008.07.089 (2008)

    Article  CAS  Google Scholar 

  29. Ševčík, R, Viani, A, Machová, D, Lanzafame, G, Mancini, L, Appavou, M-S, “Synthetic Calcium Carbonate Improves the Effectiveness of Treatments with Nanolime to Contrast Decay in Highly Porous Limestone.” Sci. Rep., 9 (1) 15278. https://doi.org/10.1038/s41598-019-51836-z (2019)

    Article  CAS  Google Scholar 

  30. Boluk, Y, Danumah, C, “Analysis of Cellulose Nanocrystal Rod Lengths by Dynamic Light Scattering and Electron Microscopy.” J. Nanoparticle Res., 16 (1) 2174. https://doi.org/10.1007/s11051-013-2174-4 (2014)

    Article  CAS  Google Scholar 

  31. Kandhola, G, Djioleu, A, Rajan, K, Labbé, N, Sakon, J, Carrier, DJ, Kim, J-W, “Maximizing Production of Cellulose Nanocrystals and Nanofibers from Pre-Extracted Loblolly Pine Kraft Pulp: A Response Surface Approach.” Bioresour. Bioprocess., 7 (1) 19. https://doi.org/10.1186/s40643-020-00302-0 (2020)

    Article  Google Scholar 

  32. Frone, AN, Panaitescu, DM, Donescu, D, Spataru, CI, Radovici, C, Trusca, R, Somoghi, R, “Preparation and Characterization of PVA Composites with Cellulose Nanofibers Obtained by Ultrasonication.” BioResour., 6 (1) 487–512. https://doi.org/10.15376/biores.6.1.487-512 (2010)

    Article  Google Scholar 

  33. El-Mofty, SE, Patra, P, El-Midany, AA, Somasundaran, P, “Dissolved Ca2+ Ions Adsorption and Speciation at Calcite-Water Interfaces: Dissolution and Zeta Potential Studies.” Sep. Purif. Technol., 257 117924. https://doi.org/10.1016/j.seppur.2020.117924 (2021)

    Article  CAS  Google Scholar 

  34. Sim, K, Lee, J, Lee, H, Youn, HJ, “Flocculation Behavior of Cellulose Nanofibrils under Different Salt Conditions and Its Impact on Network Strength and Dewatering Ability.” Cellul., 22 (6) 3689–3700. https://doi.org/10.1007/s10570-015-0784-y (2015)

    Article  CAS  Google Scholar 

  35. Tenhunen, T-M, Pöhler, T, Kokko, A, Orelma, H, Schenker, M, Gane, P, Tammelin, T, “Enhancing the Stability of Aqueous Dispersions and Foams Comprising Cellulose Nanofibrils (CNF) with CaCO3 Particles.” Nanomater., 8 (9) 651. https://doi.org/10.3390/nano8090651 (2018)

    Article  CAS  Google Scholar 

  36. Lenfant, G, Heuzey, M-C, van de Ven, TGM, Carreau, PJ, “A Comparative Study of ECNC and CNC Suspensions: Effect of Salt on Rheological Properties.” Rheol. Acta, 56 (1) 51–62. https://doi.org/10.1007/s00397-016-0979-7 (2017)

    Article  CAS  Google Scholar 

  37. Zhong, L, Fu, S, Peng, X, Zhan, H, Sun, R, “Colloidal Stability of Negatively Charged Cellulose Nanocrystalline in Aqueous Systems.” Carbohydr. Polym., 90 (1) 644–649. https://doi.org/10.1016/j.carbpol.2012.05.091 (2012)

    Article  CAS  Google Scholar 

  38. Cherhal, F, Cousin, F, Capron, I, “Influence of Charge Density and Ionic Strength on the Aggregation Process of Cellulose Nanocrystals in Aqueous Suspension, as Revealed by Small-Angle Neutron Scattering.” Langmuir, 31 (20) 5596–5602. https://doi.org/10.1021/acs.langmuir.5b00851 (2015)

    Article  CAS  Google Scholar 

  39. Fu, B, Tang, G, Li, Y, “Electron-Phonon Scattering Effect on the Lattice Thermal Conductivity of Silicon Nanostructures.” Phys. Chem. Chem. Phys., 19 (42) 28517–28526. https://doi.org/10.1039/C7CP04638C (2017)

    Article  CAS  Google Scholar 

  40. Dunn, AS, Introduction to Physical Polymer Science (2nd Edition). Sperling, LH, New York; John Wiley & Sons Inc, New York. (1992). https://doi.org/10.1002/pi.1994.210330214.

    Book  Google Scholar 

  41. Menard, KP, Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton, FL (1999)

    Book  Google Scholar 

  42. Yamamoto, Y, Ichiura, H, Ohtani, Y, “Improvement of Wet Paper Strength Using a Phosphoric Acid-Urea Solution.” Cellul., 26 (8) 5105–5116. https://doi.org/10.1007/s10570-019-02423-y (2019)

    Article  CAS  Google Scholar 

  43. Sun, B, Hou, Q, Liu, Z, Ni, Y, “Sodium Periodate Oxidation of Cellulose Nanocrystal and Its Application as a Paper Wet Strength Additive.” Cellul., 22 (2) 1135–1146. https://doi.org/10.1007/s10570-015-0575-5 (2015)

    Article  CAS  Google Scholar 

  44. Hollertz, R, Durán, VL, Larsson, PA, Wågberg, L, “Chemically Modified Cellulose Micro- and Nanofibrils as Paper-Strength Additives.” Cellul., 24 (9) 3883–3899. https://doi.org/10.1007/s10570-017-1387-6 (2017)

    Article  CAS  Google Scholar 

  45. Lu, C, Grigoriev, V, Rosencrance, S, "Polyamine Polyamidoamine Epihalohydrin Compositions and Processes for Preparing and Using the Same." EP2691442A1, February 5, 2014. https://patents.google.com/patent/EP2691442A1/en

Download references

Acknowledgments

This project was funded by the USDA–NIFA, award number #2018-67022-27972 2018–2022.

Author information

Authors and Affiliations

Authors

Contributions

Drs. B. Hutton-Prager and E. Ureña-Benavides were responsible for the overall conceptualization of this project. They participated in the formal analysis and development of new learning gained as a result, and were responsible for most of the methodology development, with input from the other authors. Dr. S. Parajuli was responsible for data acquisition of the ZP and DLS measurements as well as the resulting analysis, while Dr. K. Adenekan performed thermal barrier and DMA measurements. Dr. B. Hutton-Prager led the write-up efforts for the majority of drafts and final version, with input from Drs. S. Parajuli and E. Ureña-Benavides.

Corresponding author

Correspondence to Brenda Hutton-Prager.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutton-Prager, B., Ureña-Benavides, E., Parajuli, S. et al. Investigation of cellulose nanocrystals (CNC) and cellulose nanofibers (CNF) as thermal barrier and strengthening agents in pigment-based paper coatings. J Coat Technol Res 19, 337–346 (2022). https://doi.org/10.1007/s11998-021-00538-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00538-1

Keywords

Navigation