Skip to main content
Log in

Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Selection of wall materials is one of the critical steps for the successful encapsulation of polyunsaturated oils such as Sacha Inchi oil (SO) using spray drying. In this study, wall material composition was optimized from 10 experimental runs with different combinations of maltodextrin (MD), modified starch (MS), and whey protein concentrate (WPC) using a mixture design. The encapsulation efficiency (EE), process yield (PY), particle size, and hygroscopicity of SO microcapsules (SOMs) were first determined for individual runs with wall material concentrations being 0–15% w/w in the feed and the oil loading being 30% w/w of total solids. The results showed that WPC negatively affected the EE and PY. The R2 and desirability when predicting EE, PY, and hygroscopicity based on formulations using the mixture design model were relatively high 0.92, 0.77, and 0.92, respectively, with the optimal formulation predicted to be 9.25% w/w MD and 5.75% w/w MS in the feed. Microcapsules produced with the predicted optimal formulation had values close to the predictions (EE: 88.87% vs 87.79%; PY: 53.27% vs 60.51%; and hygroscopicity: 5.56% vs 5.23%). SOMs had a red blood cell shape without surface cracks or holes. Additionally, encapsulation extended the oxidative stability of SO up to 1 month at 25 °C. The strong non-acceptable volatile compounds initially present in SO, including hexanal, 2-heptanal, 2,4-heptadienal, and 2-octenal, become undetectable in the SOMs prepared with a ternary blend of MD, MS, and WPC. Therefore, formulations optimized in the present study may be applied to utilize SO in the form of spray-dried microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Fish oil microencapsulation as influenced by spray dryer operational variables. International Journal of Food Science and Technology, 48, 1707–1713.

    Article  CAS  Google Scholar 

  • Ahad, T., Masoodi, F. A., Gull, A., Wani, S. M., & Shafi, M. N. (2021). Optimization of process parameters for spray drying of ginger oleoresin powder using response surface methodology. Journal of Food Processing and Preservation, 45, e15190.

    Article  CAS  Google Scholar 

  • Alimentarius, C. (2013). Codex standard for named vegetable oils:Codex-Stan 210. FAO/WHO.

    Google Scholar 

  • AOCS. (2007). Official methods and recommended practices of the American Oil Chemist’s Society (7th ed). Champaign: American Oil Chemists-Society.

  • Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25, 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Calvo, P., Hernández, T., Lozano, M., & González-Gómez, D. (2010). Microencapsulation of extra-virgin olive oil by spray-drying: Influence of wall material and olive quality. European Journal of Lipid Science and Technology, 112, 852–858.

    Article  CAS  Google Scholar 

  • Carmona, P. A. O., Garcia, L. C., Ribeiro, J. A. A., Valadares, L. F., Marcal, A. F., Franca, L. F., & Mendonca, S. (2018). Effect of solids content and spray-drying operating conditions on the carotenoids microencapsulation from pressed palm fiber oil extracted with supercritical CO2. Food and Bioprocess Technology, 11, 1703–1718.

    Article  CAS  Google Scholar 

  • Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115, 443–451.

    Article  CAS  Google Scholar 

  • Chang, C., & Nickerson, M. T. (2018). Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. Journal of Food Science and Technology, 55, 2850–2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, Y.-R., & Chang, Y. H. (2018). Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocolloids, 85, 222–228.

    Article  CAS  Google Scholar 

  • Comunian, T. A., da Silva Anthero, A. G., Bezerra, E. O., Moraes, I. C. F., & Hubinger, M. D. (2020a). Encapsulation of pomegranate seed oil by emulsification followed by spray drying: Evaluation of different biopolymers and their effect on particle properties. Food and Bioprocess Technology, 13, 53–66.

    Article  CAS  Google Scholar 

  • Comunian, T. A., Grassmann Roschel, G., da Silva Anthero, A. G., de Castro, I. A., & Dupas Hubinger, M. (2020b). Influence of heated, unheated whey protein isolate and its combination with modified starch on improvement of encapsulated pomegranate seed oil oxidative stability. Food Chemistry, 326, 126995.

    Article  CAS  PubMed  Google Scholar 

  • Corrochano, A. R., Buckin, V., Kelly, P. M., & Giblin, L. (2018). Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. Journal of Dairy Science, 101, 4747–4761.

    Article  CAS  PubMed  Google Scholar 

  • Davidov-Pardo, G., Arozarena, I., & Marín-Arroyo, M. R. (2013). Optimization of a wall material formulation to microencapsulate a grape seed extract using a mixture design of experiments. Food and Bioprocess Technology, 6, 941–951.

    Article  CAS  Google Scholar 

  • Dórame-Miranda, R. F., Gámez-Meza, N., Ovando-Martínez, M., Medina-Juárez, L. A., Cárdenas-López, J. L., Ramírez-Bon, R., Santos-Sauceda, I., Castro-Enríquez, D. D., & Burruel-Ibarra, S. E. (2021). Encapsulation of sardine oil by electrospraying with gliadins and pecan nutshell extracts for its stabilization. Food and Bioprocess Technology, 14, 457–470.

    Article  Google Scholar 

  • Eriksson, L., Johansson, E., & Wikström, C. (1998). Mixture design–design generation, PLS analysis, and model usage. Chemometrics and Intelligent Laboratory Systems, 43, 1–24.

    Article  CAS  Google Scholar 

  • Fanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P., & Mondello, L. (2011). Chemical characterization of Sacha Inchi (Plukenetia volubilis L.) oil. Journal of Agricultural and Food Chemistry, 59, 13043–13049.

    Article  CAS  PubMed  Google Scholar 

  • Felix, P. H. C., Birchal, V. S., Botrel, D. A., Marques, G. R., & Borges, S. V. (2017). Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. Journal of Food Processing and Preservation, 41, e12919.

    Article  Google Scholar 

  • Fioramonti, S. A., Rubiolo, A. C., & Santiago, L. G. (2017). Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technology, 319, 238–244.

    Article  CAS  Google Scholar 

  • Follegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. The Journal of Supercritical Fluids, 49, 323–329.

    Article  CAS  Google Scholar 

  • Galmarini, M. V., Maury, C., Mehinagic, E., Sanchez, V., Baeze, R. I., Mignot, S., Zamora, M. C., & Chirfe, J. (2013). Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food and Bioprocess Technology, 6, 3585–3595.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40, 1107–1121.

    Article  CAS  Google Scholar 

  • Gonzales, G. F., & Gonzales, C. (2014). A randomized, double-blind placebo-controlled study on acceptability, safety and efficacy of oral administration of Sacha Inchi oil (Plukenetia volubilis L.) in adult human subjects. Food and Chemical Toxicology, 65, 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Gotoh, N., & Wada, S. (2006). The importance of peroxide value in assessing food quality and food safety. Journal of the American Oil Chemists’ Society, 83, 473–474.

    Article  CAS  Google Scholar 

  • Gutiérrez, L. F., Quiñones-Segura, Y., Sanchez-Reinoso, Z., Díaz, D. L., & Abril, J. I. (2017). Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chemistry, 237, 581–587.

    Article  PubMed  Google Scholar 

  • Hagler, A. T., & Lifson, S. (1974). Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. Journal of the American Chemical Society, 96, 5327–5335.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, T. V., Caffin, N., Dykes, G. A., & Bhandari, B. (2008). Optimization of the microencapsulation of lemon myrtle oil using response surface methodology. Drying Technology, 26, 357–368.

    Article  CAS  Google Scholar 

  • Inapurapu, S. P., Ibrahim, A., Kona, S. R., Pawar, S. C., Pawar, S. C., Bodiga, S., & Bodiga, V. L. (2020). Development and characterization of ω-3 fatty acid nanoemulsions with improved physicochemical stability and bioaccessibility. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 606, 125515.

    Article  CAS  Google Scholar 

  • Jafari, M., He, Y.-H., & Bhandari, B. (2007). Role of powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technology, 25(6), 1081–1089.

    Article  CAS  Google Scholar 

  • Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014). Microencapsulation of Gac oil by spray drying: Optimization of wall material concentration and oil load using response surface methodology. Drying Technology, 32, 385–397.

    Article  CAS  Google Scholar 

  • Koç, M., Güngör, Ö., Zungur, A., Yalçın, B., Selek, İ, Ertekin, F. K., & Ötles, S. (2015). Microencapsulation of extra virgin olive oil by spray drying: Effect of wall materials composition, process conditions, and emulsification method. Food and Bioprocess Technology, 8(2), 301–318.

    Article  Google Scholar 

  • Lavanya, M. N., Kathiravan, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Influence of spray-drying conditions on microencapsulation of fish oil and chia oil. Drying Technology, 38, 279–292.

    Article  CAS  Google Scholar 

  • Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 126, 498–505.

    Article  CAS  Google Scholar 

  • Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.

    Article  Google Scholar 

  • Molendi-Coste, O., Legry, V., & Leclercq, I. A. (2011). Why and how meet n-3 PUFA dietary recommendations? Gastroenterology Research and Practice, 2011, 364040.

    Article  PubMed  Google Scholar 

  • Monroy Soto, L. T., López Cordoba, C. A., Araque Marín, P., Torijano Gutierrez, S. A., & Zapata Ochoa, J. A. (2019). Caracterización de los compuestos de aroma del aceite de Sacha Inchi (Plukenetia volubilis L.) por HS-SPME-GC-MS-O. Revista Colombiana De Química, 48, 45–50.

    Article  Google Scholar 

  • Murali, S., Abhijit, K., Avinash Singh, P., Debabandya, M., & Krishnakumar, P. (2017). Optimization of rice bran oil encapsulation using Jackfruit seed starch – whey protein isolate blend as wall material and its characterization. International Journal of Food Engineering, 13(4).

  • Nambiar, R. B., Sellamuthu, P. S., & Perumal, A. B. (2017). Microencapsulation of tender coconut water by spray drying: Effect of Moringa oleifera Gum, maltodextrin concentrations, and inlet temperature on powder qualities. Food and Bioprocess Technology, 10, 1668–1684.

    Article  CAS  Google Scholar 

  • Partanen, R., Murtomäki, L., Moisio, T., Lähteenmäki, M., Toikkanen, O., Hartikainen, R., & Forssell, P. (2014). Routes to control oxygen transfer across biomatrix. Japan Journal of Food Engineering, 15, 61–67.

    Article  Google Scholar 

  • Pithanthanakul, U., Vatanyoopaisarn, S., Thumthanaruk, B., Puttanlek, C., Uttapap, D., Kietthanakorn, B., & Rungsardthong, V. (2021). Encapsulation of fragrances in zein nanoparticles and use as fabric softener for textile application. Flavour and Fragrance Journal, 36, 365–373.

    Article  CAS  Google Scholar 

  • Piornos, J.A., Burgos-Díaz, C., Morales, E., Rubilar, M., Acevedo, F. (2017). Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: Optimization of the emulsion formulation. Food Hydrocolloids, 63, 139–148.

  • Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried Drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105, 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  • Premjit, Y., & Mitra, J. (2021). Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design. Food and Bioprocess Technology, 14, 1712–1729.

    Article  CAS  Google Scholar 

  • Quispe-Condori, S., Saldaña, M. D. A., & Temelli, F. (2011). Microencapsulation of flax oil with zein using spray and freeze drying. LWT-Food Science and Technology, 44, 1880–1887.

    Article  CAS  Google Scholar 

  • Sanchez-Reinoso, Z., & Gutiérrez, L.-F. (2017). Effects of the emulsion composition on the physical properties and oxidative stability of Sacha Inchi (Plukenetia volubilis L.) oil microcapsules produced by spray drying. Food and Bioprocess Technology, 10, 1354–1366.

    Article  CAS  Google Scholar 

  • Sansone, F., Mencherini, T., Picerno, P., d’Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105, 468–476.

    Article  CAS  Google Scholar 

  • Selamassakul, O., Laohakunjit, N., Kerdchoechuen, O., & Ratanakhanokchai, K. (2016). A novel multi-biofunctional protein from brown rice hydrolysed by endo/endo-exoproteases. Food and Function, 7, 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  • Shahavi, M. H., Morteza, H., Mohsen, J., & Ghasem, N. (2015). Optimization of encapsulated clove oil particle size with biodegradable shell using design expert methodology. Pakistan Journal of Biotechnology, 12, 149–160.

    Google Scholar 

  • Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 9, 345–381.

    Article  CAS  PubMed  Google Scholar 

  • Shahidi Noghabi, M., & Molaveisi, M. (2020). Microencapsulation optimization of cinnamon essential oil in the matrices of gum Arabic, maltodextrin, and inulin by spray-drying using mixture design. Journal of Food Process Engineering, 43, e13341.

    Article  Google Scholar 

  • Srithongkul, C., Wongsaipun, S., Krongchai, C., Santasup, C., & Kittiwachana, S. (2019). Investigation of mobility and bioavailability of arsenic in agricultural soil after treatment by various soil amendments using sequential extraction procedure and multivariate analysis. CATENA, 181, 104084.

    Article  CAS  Google Scholar 

  • Sultana, A., Ghani, A., Adachi, S., & Yoshii, H. (2020). Spray drying as for food-grade nanomaterial. In U. Hebbar, S. Ranjan, N. Dasgupta, & R. Kumar Mishra (Eds.), Nano-food Engineering (Vol. 1, pp. 309–325). Springer International Publishing.

    Chapter  Google Scholar 

  • Sun-Waterhouse, D., Wang, W., & Waterhouse, G. I. N. (2014). Canola oil encapsulated by alginate and its combinations with starches of low and high amylose content: Effect of quercetin on oil stability. Food and Bioprocess Technology, 7, 2159–2177.

    Article  CAS  Google Scholar 

  • Suwannasang, S., Thumthanaruk, B., Zhong, Q., Uttapap, D., Puttanlek, C., Vatanyoopaisarn, S., & Rungsardthong, V. (2021). The improved properties of zein encapsulating and stabilizing Sacha Inchi oil by surfactant combination of lecithin and tween 80. Food and Bioprocess Technology, 14, 2078–2090.

    Article  CAS  Google Scholar 

  • Tan, Y., Liu, J., Zhou, H., Muriel Mundo, J., & McClements, D. J. (2019). Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Research International, 120, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • Tavares, L., & Noreña, C. P. Z. (2020). Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization. Food and Bioprocess Technology, 13, 1405–1420.

    Article  CAS  Google Scholar 

  • Thirundas, R., Gadhe, K. S., & Syed, I. H. (2014). Optimization of wall material concentration in preparation of flaxseed oil powder using response surface methodology. Journal of Food Processing and Preservation, 38, 889–895.

    Article  CAS  Google Scholar 

  • Tonon, R., Pedro, R., Grosso, C., & Hubinger, M. (2012). Microencapsulation of flaxseed oil by spray drying: Effect of oil load and type of wall material. Drying Technology, 30, 1491–1501.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44, 282–289.

    Article  CAS  Google Scholar 

  • Tontul, I., & Topuz, A. (2013). Mixture design approach in wall material selection and evaluation of ultrasonic emulsification in flaxseed oil microencapsulation. Drying Technology, 31, 1362–1373.

    Article  CAS  Google Scholar 

  • Velasco, J., Marmesat, S., Dobarganes, C., & Márquez-Ruiz, G. (2006). Heterogeneous aspects of lipid oxidation in dried microencapsulated oils. Journal of Agricultural and Food Chemistry, 54, 1722–1729.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., Leible, M., Lin, J., Weiss, J., & Zhong, Q. (2020). Caffeic acid phenethyl ester loaded in skim milk microcapsules: Physicochemical properties and enhanced In Vitro bioaccessibility and bioactivity against colon cancer cells. Journal of Agricultural and Food Chemistry, 68, 14978–14987.

    Article  CAS  PubMed  Google Scholar 

  • Wangdee, K., Decker, E. A., & Onsaard, E. (2022). Characterization of encapsulated γ-oryzanol powder by spray drying using whey protein and maltodextrin as wall materials. Journal of Food Science and Technology, 59, 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., Kang, Y., Hou, W., Niu, Y., & Kou, X. (2019). Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. International Journal of Biological Macromolecules, 137, 132–138.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz, G., Ding, J., Gaur, S., Andrade, J., Engeseth, N. E., & Feng, H. (2018). Microencapsulation of docosahexaenoic acid (DHA) with four wall materials including pea protein-modified starch complex. International Journal of Biological Macromolecules, 114, 935–941.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, M. B., & Windhab, E. J. (2010). Encapsulation of iron and other micronutrients for food fortification. In N. J. Zuidam & V. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 187–209). Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

Zhong acknowledges USDSA hatch project TEN00568 supporting this work.

Funding

This work was funded by the Royal Golden Jubilee Ph.D. Program grant number PHD/0175/2559 from the National Research Council of Thailand (NRCT) and the Thailand Research Fund (TRF). The research was also partially supported by NRCT Senior Research Scholar Program (Contract No.814–2020) and King Mongkut’s University of Technology North Bangkok (Contract no. KMUTNB-BasicR-64-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilai Rungsardthong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Three wall materials were optimized for spray-drying Sacha Inchi oil (SO) emulsions.

• Maltodextrin, WPC, and modified starch were optimized using mixture design.

• WPC negatively affected the encapsulation efficiency (EE) and process yield (PY).

• The EE and PY, and hygroscopicity of the optimized powder were close to the prediction.

• The unpleasant volatile compounds were not detected in the spray-dried powder.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwannasang, S., Zhong, Q., Thumthanaruk, B. et al. Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties. Food Bioprocess Technol 15, 2499–2514 (2022). https://doi.org/10.1007/s11947-022-02893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02893-2

Keywords

Navigation