Skip to main content

Advertisement

Log in

Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pomegranate seed oil (PSO) is rich in bioactive compounds and is susceptible to oxidation. This research sought to encapsulate PSO in conventional and Pickering emulsions using whey protein isolate (WPI) microgels, WPI in its natural form, gum Arabic (GA), and WPI combinations with GA, maltodextrin (MD), and modified starch (Capsul®) as aqueous phase/emulsifier followed by spray drying. Emulsions with 1.39–2.55 μm droplet size, low viscosity (1.47–3.96 mPa s), and final interfacial tensions of 4.21–9.97 mN m−1 were obtained. All formulations were stable with the Turbiscan stability index between 4.57% and 12.95% at 24 h. Emulsions resulted in particles with encapsulation efficiency and yield of 56.28–73.83% and 28.07–93.99%, respectively. PSO powders had small particle sizes (9.86–22.60 μm), high glass transition temperature (103.24–121.62 °C), and oxidative stability index (OSI) of 2.71 h and in the range of 4.11–21.23 h for non-encapsulated and encapsulated PSO, respectively. All formulations promoted the oil oxidative protection when compared with the non-encapsulated one. Treatments presented feasible values of Aw, moisture, solubility, and hygroscopicity for handling and storage of the powders. WPI, WPI:Capsul®, and Pickering treatments promoted greater protection of the encapsulated oil; however, the combination of WPI with modified starch was considered the best wall material, allowing protection of PSO and future applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafice, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6, 1561–1569.

    Article  CAS  Google Scholar 

  • Amin, M. C. I. M., Abadi, A. G., & Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers, 99, 180–189.

    Article  CAS  Google Scholar 

  • Barbosa-Cánovas, G. V., & Juliano, P. (2005). Physical and chemical properties of food powders. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 39–71). Taylor & Francis Group, Boca Raton: CRC Press LLC.

    Chapter  Google Scholar 

  • Belscak-Cvitanovic, A., Levic, S., Kalusevic, A., Spolkaric, I., Dordevic, V., Komes, D., Mrsic, G., & Nedovic, V. (2015). Efficiency assessment of natural biopolymers as encapsulants of green tea (Camellia sinensis L.) bioactive comounds by spray drying. Food and Bioprocess Technology, 8, 2444–2460.

    Article  CAS  Google Scholar 

  • Bhandari, B. R., & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40, 71–79.

    Article  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

    Article  CAS  Google Scholar 

  • Bryant, C. M., & McClements, D. J. (2000). Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients. Journal of Food Science, 65, 259–263.

    Article  CAS  Google Scholar 

  • Bucurescu, A., Blaga, A. C., Estevinho, B. N., & Rocha, F. (2018). Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food and Bioprocess Technology, 11, 1705–1806.

    Article  Google Scholar 

  • Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science, 65(6), 1248–1252.

    Article  CAS  Google Scholar 

  • Calabrese, V., Courtenay, J. C., Edler, K. J., & Scott, J. L. (2018). Pickering emulsions stabilized by naturally derived or biodegradable particles. Current Opinion in Green and Sustainable Chemistry, 12, 83–90.

    Article  Google Scholar 

  • Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 5(4), 420–428.

    Article  Google Scholar 

  • Carvalho, A. G. S., Silva, V. M., & Hubinger, M. D. (2014). Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International, 61, 236–245.

    Article  CAS  Google Scholar 

  • Carvalho, A. G. S., Machado, M. T. C., Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of Jussara (Euterpe edulis Martius) extract. Powder Technology, 294, 421–428.

    Article  CAS  Google Scholar 

  • Costa, A. L. R., Gomes, A., & Cunha, R. L. (2018a). One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Research International, 107, 717–725.

    Article  CAS  Google Scholar 

  • Costa, A. L. R., Gomes, A., Tibolla, H., Menegalli, F. C., & Cunha, R. L. (2018b). Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydrate Polymers, 194, 122–131.

    Article  CAS  Google Scholar 

  • Domian, E., Brynda-Kopytowska, A., & Marzec, A. (2017). Functional properties and oxidative stability of flaxseed oil microencapsulated by spray drying using legume proteins in combination with soluble fiber or trehalose. Food and Bioprocess Technology, 1–13.

  • Donato, L., Schmitt, C., Bovetto, L., & Rouvet, M. (2009). Mechanism of formation of stable heat-induced β-lactoglobulin microgels. International Dairy Journal, 19, 295–306.

    Article  CAS  Google Scholar 

  • Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., & O’Mahony, J. A. (2017). Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids, 69, 56–66.

    Article  CAS  Google Scholar 

  • Eastman, J.E.; Moore, C.O. Cold Water Soluble Granular Starch for Gelled Food Composition. U.S. Patent 4465702, 14 ago. 1984.

  • Elfalleh, W., Ying, M., Nasri, N., Sheng-Hua, H., Guasmi, F., & Ferchichi, A. (2011). Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds. International Journal of Food Sciences and Nutrition, 62(3), 200–206.

    Article  CAS  Google Scholar 

  • Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & Aguirre, J. M. A. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245.

    Article  CAS  Google Scholar 

  • Fioramonti, S. A., Stepanic, E. M., Tibaldo, A. M., Pavón, Y. L., & Santiago, L. G. (2019). Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Research International, 119, 931–940.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Guzey, D., Kim, H. J., & McClements, D. J. (2004). Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin-pectin membranes. Food Hydrocolloids, 18, 967–975.

    Article  CAS  Google Scholar 

  • Hoyos-Leyva, J. D., Bello-Perez, L. A., Agama-Acevedo, J. E., Alvarez-Ramirez, J., & Jaramillo-Echeverry, L. M. (2019). Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. LWT- Food Science and Technology, 101, 526–533.

    Article  CAS  Google Scholar 

  • Jiang, S., Yildiz, G., Ding, J., Andrade, J., Rababahb, T., Almajwalc, A., Abulmeatyc, M. M., & Feng, H. (2019). Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food and Bioprocess Technology, 12, 1031–1040.

    Article  CAS  Google Scholar 

  • Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205.

    Article  Google Scholar 

  • Liu, W., Gao, H., McClements, D. J., Zhou, L., & Zou, L. (2019). Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocolloids, 88, 210–217.

    Article  CAS  Google Scholar 

  • Loughrill, E., Thompson, S., Owusu-Ware, S., Snowden, M. J., Douroumis, D., & Zand, N. (2019). Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing. Food Chemistry, 286, 368–375.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2011). Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter, 7, 2297–2316.

    Article  CAS  Google Scholar 

  • Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behaviour and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105(Pt 1), 1232–1240.

    Article  CAS  Google Scholar 

  • Ravanfar, R., Comunian, T. A., Dando, R., & Abbaspourrad, A. (2018). Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chemistry, 241, 460–467.

    Article  CAS  Google Scholar 

  • Ross, Y. H. (1995). Phase transitions in foods. San Diego: Academic Press.

    Google Scholar 

  • Samborska, K., Jedlinska, A., Wiktor, A., Derewiaka, D., Wolosiak, R., Matwijczuk, A., Jamróz, W., Skwarczynska-Maj, K., Kielczewski, D., Blazowski, L., Tulodziecki, M., & Witrowa-Rajchert, D. (2019). The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. Food and Bioprocess Technology, 12, 919–932.

    Article  CAS  Google Scholar 

  • Santomaso, A., Lazzaro, P., & Canu, P. (2003). Powder flowability and density ratios: The impact of granules packing. Chemical Engineering Science, 58, 2857–2874.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, 33, 501–547.

    Article  CAS  Google Scholar 

  • Siano, F., Addeo, F., Volpe, M. G., Paolucci, M., & Picariello, G. (2016). Oxidative stability of pomegranate (Punica granatum L.) seed oil to simulated gastric conditions and thermal stress. Journal of Agricultural and Food Chemistry, 64, 8369–8378.

    Article  CAS  Google Scholar 

  • Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358–365.

    Article  CAS  Google Scholar 

  • Webb, P. A. (2001). Volume and density determinations for particle technologists. Micromeritics instruments Corp. 2/16/01 (www.micromeritics.com).

  • Zamani, S., Malchione, N., Selig, M. J., & Abbaspourrad, A. (2018). Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels. Food & Function, 9(2), 982–990.

    Article  CAS  Google Scholar 

  • Zheng, L., Cao, C., Li, R.-Y., Cao, L.-D., Zhou, Z.-L., Li, M., & Huang, Q.-L. (2018). Preparation and characterization of water-in-oil emulsions of isoprothiolane. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 537, 399–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP (Fundação de Auxílio à Pesquisa do Estado de São Paulo) for scholarship conceded to Talita A. Comunian (Process 2018/01710-5) and to Ana Gabriela da Silva Anthero (Process 2018/02132-5), CNPq for scholarship conceded to Eveling Oliveira Bezerra (Process 118279/2018-01), De Wit Specialty Oils for the pomegranate oil donation, Fonterra for WPI donation, Ingredion for maltodextrin and modified starch donation and Centro de Microscopia Eletrônica (Universidade Federal de São Paulo, Escola Paulista de Medicina - UNIFESP) for assistance with transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talita A. Comunian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1 Pomegranate oil was successfully encapsulated by emulsification followed by spray drying;

2 Emulsions were 87-95 % stable at 24 h after preparation;

3 Particles with whey protein (WPI) as wall material promoted the highest oil oxidative protection;

4 The combination of WPI and Capsul® resulted in particles with higher thermostability;

5 Pickering particles presented lower water solubility due to protein denaturation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comunian, T.A., da Silva Anthero, A.G., Bezerra, E.O. et al. Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties. Food Bioprocess Technol 13, 53–66 (2020). https://doi.org/10.1007/s11947-019-02380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02380-1

Keywords

Navigation