Skip to main content
Log in

Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ginger essential oil (GO) was encapsulated with whey protein isolate (WPI)/gum Arabic (GA) and GA/chitosan (CH) complex coacervates. Best complex coacervate yields (43 and 73%) were obtained when using mass ratios of 3:1 (w:w), for WPI/GA, and of 5:1 (w/w) for GA/CH, respectively, and both behaved as shear thinning fluids. Frequency sweep revealed that G″ predominated over G′ for the both complex coacervate at low frequency values, and a crossover between the viscoelastic moduli occurred at about 5 Hz for GA/CH and at 60 Hz for WPI/GA. The magnitude of the viscoelastic moduli was higher for GA/CH than for WPI/GA. The creep-recovery tests showed that the coacervates with GO resulted in higher compliance values and weaker internal network structures. The Burgers model equation and exponential decay function were adequate to adjust the experimental data and describe the coacervate creep and recovery behavior, respectively. The obtained coacervates were freeze-dried for 48 h and then characterized concerning entrapment efficiency, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), solubility, and hygroscopicity. FTIR analyses revealed that only physical interactions occurred between the functional groups of GO and of WPI/GA and GA/CH complexes. TGA showed that wall materials contributed to a significant increase in the GO thermal stability and also evidenced some non-encapsulated GO present on the surface of WPI/GO/GA powders. The entrapment efficiency was 55.31 and 81.98% using complex of GA/CH and WPI/GA, respectively, revealing GA/CH as a more efficient complex for the GO protection (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. (2010). Spray-freeze-drying of whey proteins at sub-atmospheric pressures. Dairy Science & Technology, 90(2–3), 321–334.

    CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: creep and recovery behaviours. Food Research International, 54(1), 169–176.

    CAS  Google Scholar 

  • Azizi, M., Kierulf, A., Lee, M. C., & Abbaspourrad, A. (2018). Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chemistry, 246, 448–456.

    CAS  PubMed  Google Scholar 

  • Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pacific Journal of Tropical Disease, 4(1), 40–44.

    CAS  PubMed Central  Google Scholar 

  • Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608–616.

    CAS  PubMed  Google Scholar 

  • Cai, Y., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.

    CAS  Google Scholar 

  • Cai, S., & Singh, B. R. (1999). Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophysical Chemistry, 80(1), 7–20.

    CAS  PubMed  Google Scholar 

  • Cano-Chauca, M., Stringheta, P., Ramos, A., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.

    CAS  Google Scholar 

  • Castro-Rosas, J., Ferreira-Grosso, C. R., Gómez-Aldapa, C. A., Rangel-Vargas, E., Rodríguez-Marín, M. L., Guzmán-Ortiz, F. A., & Falfan-Cortes, R. N. (2017). Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food-a review. Food Research International, 102, 575–587.

    CAS  PubMed  Google Scholar 

  • Chang, P. G., Gupta, R., Timilsena, Y. P., & Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 191, 58–66.

    CAS  Google Scholar 

  • Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release. Food Research International, 52(1), 373–379.

    CAS  Google Scholar 

  • da Silva, F. T., da Cunha, K. F., Fonseca, L. M., Antunes, M. D., El Halal, S. L. M., Fiorentin, Â. M., et al. (2018). Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 118(Pt A), 107–115.

    CAS  PubMed  Google Scholar 

  • Dogan, M., Kayacier, A., Toker, Ö. S., Yilmaz, M. T., & Karaman, S. (2013). Steady, dynamic, creep, and recovery analysis of ice cream mixes added with different concentrations of xanthan gum. Food and Bioprocess Technology, 6(6), 1420–1433.

    CAS  Google Scholar 

  • Dolz, M., Hernández, M., & Delegido, J. (2008). Creep and recovery experimental investigation of low oil content food emulsions. Food Hydrocolloids, 22(3), 421–427.

    CAS  Google Scholar 

  • Eghbal, N., & Choudhary, R. (2018). Complex coacervation: encapsulation and controlled release of active agents in food systems. LWT - Food Science and Technology, 90, 254–264.

    CAS  Google Scholar 

  • Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2014). Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food & Function, 5(11), 2743–2750.

    CAS  Google Scholar 

  • Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, 882–892.

    CAS  Google Scholar 

  • Eratte, D., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2017). In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chemistry, 227, 129–136.

    CAS  PubMed  Google Scholar 

  • Espinal-Ruiz, M., Parada-Alfonso, F., Restrepo-Sánchez, L.-P., Narváez-Cuenca, C.-E., & McClements, D. J. (2014). Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions. Food & Function, 5(12), 3083–3095.

    CAS  Google Scholar 

  • Espinosa-Andrews, H., Báez-González, J. G., Cruz-Sosa, F., & Vernon-Carter, E. J. (2007). Gum arabic−chitosan complex coacervation. Biomacromolecules, 8(4), 1313–1318.

    CAS  PubMed  Google Scholar 

  • Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541–546.

    CAS  Google Scholar 

  • Espinosa-Andrews, H., Enríquez-Ramírez, K. E., García-Márquez, E., Ramírez-Santiago, C., Lobato-Calleros, C., & Vernon-Carter, J. (2013). Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydrate Polymers, 95(1), 161–166.

    CAS  PubMed  Google Scholar 

  • Estrada-Fernández, A. G., Román-Guerrero, A., Jiménez-Alvarado, R., Lobato-Calleros, C., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). Stabilization of oil-in-water-in-oil (O1/W/O2) Pickering double emulsions by soluble and insoluble whey protein concentrate-gum Arabic complexes used as inner and outer interfaces. Journal of Food Engineering, 221, 35–44.

    Google Scholar 

  • Ezhilarasi, P., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    CAS  Google Scholar 

  • Fan, Q., Wang, L., Song, Y., Fang, Z., Subirade, M., & Liang, L. (2017). Partition and stability of resveratrol in whey protein isolate oil-in-water emulsion: impact of protein and calcium concentrations. International Dairy Journal, 73, 128–135.

    CAS  Google Scholar 

  • Fernandes, R. V., Marques, G. R., Borges, S. V., & Botrel, D. A. (2014). Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Industrial Crops and Products, 58, 173–181.

    CAS  Google Scholar 

  • Fernandes, R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., et al. (2016a). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 94, 413–423.

    CAS  Google Scholar 

  • Fernandes, R. V., Botrel, D. A., Silva, E. K., Borges, S. V., de Oliveira, C. R., Yoshida, M. I., et al. (2016b). Cashew gum and inulin: new alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 153, 133–142.

    CAS  PubMed  Google Scholar 

  • Fernandes, R. V., Silva, E. K., Borges, S. V., de Oliveira, C. R., Yoshida, M. I., da Silva, Y. F., et al. (2017). Proposing novel encapsulating matrices for spray-dried ginger essential oil from the whey protein isolate-inulin/maltodextrin blends. Food and Bioprocess Technology, 10(1), 115–130.

    CAS  Google Scholar 

  • Gámiz-González, M., Correia, D. M., Lanceros-Mendez, S., Sencadas, V., Ribelles, J. G., & Vidaurre, A. (2017). Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 167, 52–58.

    PubMed  Google Scholar 

  • Huang, G. Q., Sun, Y. T., Xiao, J. X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534–539.

    CAS  PubMed  Google Scholar 

  • Huang, J., Zeng, S., Xiong, S., & Huang, Q. (2016). Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocolloids, 61, 48–56.

    CAS  Google Scholar 

  • Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8(8), 1635–1644.

    CAS  Google Scholar 

  • Jakribettu, R. P., Boloor, R., Bhat, H. P., Thaliath, A., Haniadka, R., Rai, M. P., George, T., & Baliga, M. S. (2016). Chapter 50-ginger (Zingiber officinale Rosc.) oils A2 - Preedy. In R. Victor (Ed.), Essential oils in food preservation, flavor and safety (pp. 447–454). San Diego: Academic Press.

    Google Scholar 

  • Karaman, S., Yilmaz, M. T., Cankurt, H., Kayacier, A., & Sagdic, O. (2012). Linear creep and recovery analysis of ketchup–processed cheese mixtures using mechanical simulation models as a function of temperature and concentration. Food Research International, 48(2), 507–519.

    CAS  Google Scholar 

  • Kilara, A., & Vaghela, M. N. (2018). 4 - whey proteins. In Proteins in food processing (2nd ed., pp. 93–126). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Lee, A. C., & Hong, Y. H. (2009). Coacervate formation of α-lactalbumin–chitosan and β-lactoglobulin–chitosan complexes. Food Research International, 42(5-6), 733–738.

    CAS  Google Scholar 

  • Liu, Y., Winter, H. H., & Perry, S. L. (2017). Linear viscoelasticity of complex coacervates. Advances in Colloid and Interface Science, 239, 46–60.

    CAS  PubMed  Google Scholar 

  • Lu, G. W., & Gao, P. (2010). Chapter 3-emulsions and microemulsions for topical and transdermal drug delivery A2 - Kulkarni. In S. Vitthal (Ed.), Handbook of non-invasive drug delivery systems (pp. 59–94). Boston: William Andrew Publishing.

    Google Scholar 

  • Moschakis, T., Murray, B. S., & Biliaderis, C. G. (2010). Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum Arabic mixed dispersions. Food Hydrocolloids, 24(1), 8–17.

    CAS  Google Scholar 

  • Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: processing, properties and applications. International Journal of Biological Macromolecules, 105(Pt 2), 1358–1368.

    CAS  PubMed  Google Scholar 

  • Ngo, D.-H., Vo, T. S., Ngo, D. N., Kang, K. H., Je, J. Y., Pham, H. N. D., Byun, H. G., & Kim, S. K. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloids, 51, 200–216.

    CAS  Google Scholar 

  • Retamal Marín, R. R., Babick, F., & Hillemann, L. (2017). Zeta potential measurements for non-spherical colloidal particles–practical issues of characterisation of interfacial properties of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 516–521.

    Google Scholar 

  • Rocha, C. M., Souza, H. K., Magalhães, N. F., Andrade, C. T., & Gonçalves, M. P. (2014). Rheological and structural characterization of agar/whey proteins insoluble complexes. Carbohydrate Polymers, 110, 345–353.

    CAS  PubMed  Google Scholar 

  • Rocha-Selmi, G. A., Theodoro, A. C., Thomazini, M., Bolini, H. M., & Favaro-Trindade, C. S. (2013). Double emulsion stage prior to complex coacervation process for microencapsulation of sweetener sucralose. Journal of Food Engineering, 119(1), 28–32.

    CAS  Google Scholar 

  • Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59–66.

    CAS  PubMed  Google Scholar 

  • Shi, Y., Li, C., Zhang, L., Huang, T., Ma, D., Tu, Z.-C., et al. (2017). Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum (gum Arabic). Food Hydrocolloids, 65, 10–16.

    CAS  Google Scholar 

  • Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de Lampasona, M. P., & Catalan, C. A. N. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and Chemical Toxicology, 46(10), 3295–3302.

    CAS  PubMed  Google Scholar 

  • Srinivasan, K. (2017). Ginger rhizomes (Zingiber officinale): a spice with multiple health beneficial potentials. PharmaNutrition, 5(1), 18–28.

    Google Scholar 

  • Stang, M., Karbstein, H., & Schubert, H. (1994). Adsorption kinetics of emulsifiers at oil—water interfaces and their effect on mechanical emulsification. Chemical Engineering and Processing: Process Intensification, 33(5), 307–311.

    CAS  Google Scholar 

  • Steffe, J. F. (1996). Rheological methods in food process engineering (2nd ed.). East Lansing: Freeman press.

    Google Scholar 

  • Stoyanova, A., Konakchiev, A., Damyanova, S., Stoilova, I., & Suu, P. T. (2006). Composition and antimicrobial activity of ginger essential oil from Vietnam. Journal of Essential Oil Bearing Plants, 9(1), 93–98.

    CAS  Google Scholar 

  • Tan, C., Xie, J., Zhang, X., Cai, J., & Xia, S. (2016). Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 57, 236–245.

    CAS  Google Scholar 

  • Tavares, L., & Noreña, C. P. Z. (2018). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89, 360–369.

    Google Scholar 

  • Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286.

    CAS  PubMed  Google Scholar 

  • Touré, A., Lu, H. B., Zhang, X., & Xueming, X. (2011). Microencapsulation of ginger oil in 18DE maltodextrin/whey protein isolate. Journal of Herbs, Spices & Medicinal Plants, 17(2), 183–195.

    Google Scholar 

  • Turgeon, S. L., & Laneuville, S. I. (2009). Protein + polysaccharide coacervates and complexes: from scientific background to their application as functional ingredients in food products. In S. Kasapis, I. T. Norton, & J. B. Ubbink (Eds.), Modern biopolymer science (pp. 327–363). San Diego: Academic Press.

    Google Scholar 

  • Ukeh, D. A., Birkett, M. A., Pickett, J. A., Bowman, A. S., & Jennifer Mordue, A. (2009). Repellent activity of alligator pepper, Aframomum melegueta, and ginger, Zingiber officinale, against the maize weevil, Sitophilus zeamais. Phytochemistry, 70(6), 751–758.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., & He, S. (2017). Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food and Bioprocess Technology, 10(3), 503–511.

    CAS  Google Scholar 

  • Wee, M. S., Nurhazwani, S., Tan, K. W., Goh, K. K., Sims, I. M., & Matia-Merino, L. (2014). Complex coacervation of an arabinogalactan-protein extracted from the Meryta sinclarii tree (puka gum) and whey protein isolate. Food Hydrocolloids, 42, 130–138.

    CAS  Google Scholar 

  • Weinbreck, F., Wientjes, R. H., Nieuwenhuijse, H., Robijn, G. W., & de Kruif, C. G. (2004). Rheological properties of whey protein/gum Arabic coacervates. Journal of Rheology, 48(6), 1215–1228.

    CAS  Google Scholar 

  • Wu, D., Xu, J., Chen, Y., Yi, M., & Wang, Q. (2018). Gum Arabic: a promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydrate Polymers, 181, 167–174.

    CAS  PubMed  Google Scholar 

  • Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends in Food Science & Technology, 78, 167–179.

    CAS  Google Scholar 

  • Yilmaz, M. T., Karaman, S., Dogan, M., Yetim, H., & Kayacier, A. (2012). Characterization of O/W model system meat emulsions using shear creep and creep recovery tests based on mechanical simulation models and their correlation with texture profile analysis (TPA) parameters. Journal of Food Engineering, 108(2), 327–336.

    Google Scholar 

  • You, G., Liu, X. L., & Zhao, M. M. (2018). Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids, 74, 255–266.

    CAS  Google Scholar 

  • Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454.

    CAS  Google Scholar 

Download references

Funding

The authors thank the financial support from CNPq and FAPERGS. Especially thanks to Primex (Siglufjordur, Iceland) and Arla Foods Ingredients for donating chitosan and whey proteins isolates, respectively. Loleny Tavares also thanks CAPES/CNPq-Programa Estudantes-Convênio de Pós-Graduação (PEC-PG) for scholarship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caciano Pelayo Zapata Noreña.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, L., Noreña, C.P.Z. Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. Food Bioprocess Technol 13, 1405–1420 (2020). https://doi.org/10.1007/s11947-020-02480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02480-3

Keywords

Navigation