Skip to main content
Log in

Microwave Pasteurised Pear Snack: Quality and Microbiological Stability

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

William Bartlett (Pyrus communis) pears were diced, packaged and subjected to a short continuous microwave treatment (4.7 min) which increased the temperature from 19.92 ± 1.36 to 101.11 ± 2.50 °C. Retorted samples were processed at 95.40 °C for 18.0 min for comparison. Recorded temperature data were used to calculate C, D and F values. Brix, pH, colour, texture, microbial counts, microstructure and volatile profiles of both treated samples were analysed immediately after process and after 1, 2, 4 and 6 weeks of storage at 4 °C. The C, D and F values of microwaved pears were significantly (p < 0.05) lower compared to those of retorted samples. Both methods of processing resulted in products with standard plate count of < 10 cfu/g during 6 weeks of storage at 4 °C. Microwave processing offered a final product with a total colour difference in the same range as the retorted samples. Polyphenol oxidase enzyme was inactivated below the detection level by both microwave processing and retorting. Microwaved samples also maintained cell wall integrity, although the intercellular intactness was slightly weakened and prevented the final product from developing water-soaked appearance. During storage, volatile profiles of microwaved samples showed significant (p < 0.05) differences, whereas the retort samples showed minimal changes. In comparison to conventional retorting, a short microwave treatment can result in a superior quality end-product with a comparable microbiological quality and a minimum shelf life of 6 weeks at 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aguilar-Rosas, S. F., Ballinas-Casarrubias, M. L., Nevarez-Moorillon, G. V., Martin-Belloso, O., & Ortega-Rivas, E. (2007). Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. Journal of Food Engineering, 83(1), 41–46.

    Article  CAS  Google Scholar 

  • Ahmed, E. A., & Labavitch, J. M. (1980). Cell wall metabolism in ripening fruit. Plant Physiology, 65(5), 1014–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, J., & Ramaswamy, H. S. (2004). Microwave pasteurization and sterilization of foods. Food Science and Technology-New York-Marcel Dekker, 167, 691.

    Google Scholar 

  • Australian StandardTM AS 5013.1 (2004). Food Microbiology, Method 1: Examination for specific organisms – Standard plate count.

  • Australian StandardTM AS 5013.29 (2009). Food Microbiology, Method 29: Examination for specific organisms – Colony count of yeasts and moulds.

  • Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing, 46(6), 584–602.

    Article  CAS  Google Scholar 

  • Balla, C., Farkas, J., & Dalmadi, I. (2012). Developments in minimal processing of fruits. In N. K. Sinha, J. S. Sidhu, J. Barta, J. S. Wu, & M. Pilar Cano (Eds.), Handbook of Fruits and fruit processing (2nd ed., pp. 153–173). Wiley.

  • Balogh, T., Smout, C., Nguyen, B. L., Van Loey, A. M., & Hendrickx, M. E. (2004). Thermal and high-pressure inactivation kinetics of carrot pectinmethylesterase: From model system to real foods. Innovative Food Science & Emerging Technologies, 5(4), 429–436.

    Article  CAS  Google Scholar 

  • Basak, K., & Ramaswamy, H. S. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.

    Article  CAS  Google Scholar 

  • Benlloch-Tinoco, M., Varela, P., Salvador, A., & Martínez-Navarrete, N. (2012). Effects of microwave heating on sensory characteristics of kiwifruit puree. Food and Bioprocess Technology, 5(8), 3021–3031.

    Article  CAS  Google Scholar 

  • Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete, N. (2013). Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science & Emerging Technologies, 19, 166–172.

    Article  CAS  Google Scholar 

  • Benlloch-Tinoco, M., Igual, M., Salvador, A., Rodrigo, D., & Martínez-Navarrete, N. (2014a). Quality and acceptability of microwave and conventionally pasteurised kiwifruit puree. Food and Bioprocess Technology, 7(11), 3282–3292.

    Article  CAS  Google Scholar 

  • Benlloch-Tinoco, M., Martínez-Navarrete, N., & Rodrigo, D. (2014b). Impact of temperature on lethality of kiwifruit puree pasteurization by thermal and microwave processing. Food Control, 35(1), 22–25.

    Article  Google Scholar 

  • Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete, N. (2015). Superiority of microwaves over conventional heating to preserve shelf-life and quality of kiwifruit puree. Food Control, 50, 620–629.

    Article  Google Scholar 

  • Bindu, J., Ravishankar, C. N., & Gopal, T. K. S. (2007). Shelf life evaluation of a ready-to-eat black clam (Villorita cyprinoides) product in indigenous retort puches. Journal of Food Engineering, 78(3), 995–1000.

    Article  CAS  Google Scholar 

  • Boff, J. M., Truong, T. T., Min, D. B., & Shellhammer, T. H. (2003). Effect of thermal processing and carbon dioxide-assisted high-pressure processing on pectinmethylesterase and chemical changes in orange juice. Journal of Food Science, 68(4), 1179–1184.

    Article  CAS  Google Scholar 

  • Carbonara, M., & Mattera, M. (2001). Polyphenoloxidase activity and polyphenol levels in organically and conventionally grown peach (Prunus persica L., cv. Regina bianca) and pear (Pyrus communis L., cv. Williams). Food Chemistry, 72(4), 419–424.

    Article  Google Scholar 

  • Duvetter, T., Fraeye, I., Van Hoang, T., Van Buggenhout, S., Verlient, I., Smout, C., et al. (2005). Effect of pectinmethylesterase infusion methods and processing techniques on strawberry firmness. Journal of Food Science, 70(6), S383–S388.

    Article  CAS  Google Scholar 

  • Fleet, G. H. (2011). Yeast spoilage of foods and beverages. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts: A Taxonomic Study (Vol. 3, 5th ed.). Elsevier Science.

  • Gamage, T. V., Sanguansri, P., Swiergon, P., Eelkema, M., Wyatt, P., & Leach, P. (2015). Continuous combined microwave and hot air treatment of apples for fruit fly (Bactrocera tryoni and B. jarvisi) disinfestation. Innovative Food Science & Emerging Technologies, 29, 261–270.

    Article  Google Scholar 

  • Gaulliard, F., & Richard-Forget, F. (1997). Polyphenoloxidases from Williams pear (Pyrus communis L, cv Williams): Activation, purification, and some properties. Journal of the Science of Food and Agriculture, 74(1), 49–56.

    Article  Google Scholar 

  • Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34(3), 440–444.

    Article  CAS  Google Scholar 

  • Hernandez, T., Ausín, N., & Bartolomé, B. (1997). Variations in the phenolic composition of fruit juices with different treatments. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 204(2), 151–155.

    Article  CAS  Google Scholar 

  • Ibarz, A., Pagán, J., & Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39(4), 415–422.

    Article  Google Scholar 

  • Jennings, W. G. (1961). Volatile esters of Bartlett pears. Journal of Food Science, 26(6), 564–568.

    Article  Google Scholar 

  • Jolie, R. P., Duvetter, T., Van Loey, A. M., & Hendrickx, M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydrate Research, 345(18), 2583–2595.

    Article  CAS  PubMed  Google Scholar 

  • Lima Tribst, A. A., Ana, d. S. S., & Rodriguez de Massaguer, P. (2009). Review: Microbiological quality and safety of fruit juice—past, present and future perpectives. Critical Reviews in Microbiology, 35(4), 310–339.

    Article  CAS  Google Scholar 

  • Makkumrai, W., Anthon, G. E., Sivertsen, H., Ebeler, S. E., Negre-Zakharov, F., Barrett, D. M., & Mitcham, E. J. (2014). Effect of ethylene and temperature conditioning on sensory attributes and chemical composition on 'Bartlett' pears. Postharvest Biology and Technology, 97, 44–61.

    Article  CAS  Google Scholar 

  • Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food and Bioprocess Technology, 8(9), 1864–1876.

    Article  CAS  Google Scholar 

  • Marszałek, K., Woźniak, Ł., Skąpska, S., & Mitek, M. (2016). A comparative study of the quality of strawberry purée preserved by continuous microwave heating and conventional thermal pasteurization during long-term cold storage. Food and Bioprocess Technology, 9(7), 1100–1112.

    Article  CAS  Google Scholar 

  • Martín-Belloso, O., Soliva-Fortuny, R., & Oms-Oliue, G. (2012). Fresh-cut fruits. In N. K. Sinha, J. S. Sidhu, & J. Barta (Eds.), Handbook of Fruits and Fruit Processing (2nd ed., pp. 245–262). Wiley-Blackwell.

  • Martínez-Hernández, G. B., Artés-Hernández, F., Colares-Souza, F., Gómez, P. A., García-Gómez, P., & Artés, F. (2013). Innovative cooking techniques for improving the overall quality of a kailan-hybrid broccoli. Food and Bioprocess Technology, 6(8), 2135–2149.

    Article  CAS  Google Scholar 

  • Min, S., Jin, Z. T., Yeom, H., & Zhang, Q. H. (2003). Commercial-scale pulsed electric field processing of orange juice. Journal of Food Science, 68(4), 1265–1271.

    Article  CAS  Google Scholar 

  • Montogomery, M., & Petropakis, H. (1980). Inactivation of Bartlett pear polyphenol oxidase with heat in the presence of ascorbic acid. Journal of Food Science, 45(4), 1090–1091.

    Article  CAS  Google Scholar 

  • Nagel, C. W., & Patterson, M. E. (1967). Pectic enzymes and development of the pear (Pyrus communis). Journal of Food Science, 32(3), 294–297.

    Article  CAS  Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Perdue, R. R. (2004). Packaged pasteurized fresh fruits and a method for production. USPTO 20060034980.

  • Picouet, P. A., Landl, A., Abadias, M., Castellari, M., & Viñas, I. (2009). Minimal processing of a Granny Smith apple purée by microwave heating. Innovative Food Science & Emerging Technologies, 10(4), 545–550.

    Article  CAS  Google Scholar 

  • Rinaldi, M., Litttardi, P., Paciulli, M., Ganino, T., Cocconi, E., Barbanti, D., Rodolfi, M., Aldini, A., & Chavaro, E. (2020). Impact of ohimic heating and high pressure processing on qualitative attributes of ohmic treated peach cubes in syrup. Food, 9(8), 1093.

    Article  CAS  Google Scholar 

  • Rouweler, J. (2015). Heat Process Values F (2nd Ed.) for several Commercial pasteurization and sterilization processes: Overview, uses, and restrictions. Retrieved from https://www.researchgate.net/publication/278033357_Heat_Process_Values_F_2_nd_Ed_for_several_Commercial_Pasteurization_and_Sterilization_Processes_Overview_Uses_and_Restrictions?channel=doi&linkId=557ad7aa08aee4bf82d59719&showFulltext=true. Accessed 17 Feb 2021.

  • Sánchez-Moreno, C., De Pascual-Teresa, S., De Ancos, B., & Pilar Cano, M. (2012). Nutritional quality of fruits. In N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu, & M. P. Cano (Eds.), Handbook of Fruits and Fruit Processing (2nd ed., pp. 73–84). Wiley.

  • Shen, S.-C., Wu, M.-C., & Wu, J. S. (2012). Conventional Thermal Processing and Preservation. In N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu, & M. P. Cano (Eds.), Handbook of Fruits and Fruit Processing (2nd ed., pp. 121–131). Wiley.

  • Siguemoto, E. S., & Gut, J. A. W. (2016). Dielectric properties of cloudy apple juices relevant to microwave pasteurization. Food and Bioprocess Technology, 9(8), 1345–1357.

    Article  CAS  Google Scholar 

  • Siguemoto, E. S., Pereira, L. J., & Gut, J. A. W. (2018). Inactivation kinetics of pectin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal microwave effects. Food and Bioprocess Technology, 11(7), 1359–1369.

    Article  CAS  Google Scholar 

  • Singh, R., & Sarkar, A. (2005). Thermal Properties of Frozen Foods. In M. Rao, S. Rizvi, & A. Datta (Eds.), Engineering Properties of Foods (3rd ed., pp. 175–201). CRC Press.

  • Su, S. K., & Wiley, R. C. (2006). Changes in apple juice flavor compounds during processing. Journal of Food Science, 63(4), 688–691.

    Article  Google Scholar 

  • Suwanagul, A., & Richardson, D. G. (1998). Identification of headspace volatile compounds from different pear (Pyrus communis L.) varieties. Acta Horticulturae, 475, 605–624.

    Article  CAS  Google Scholar 

  • Toledo, R. R. (2007). Fundamentals of Food Process Engineering (3rd ed.pp. 125–152). Springer Science+Business Media, LLC.

  • Tournas, V. H., Heeres, J., & Burgess, L. (2006). Moulds and yeasts in fruit salads and fruit juices. Food Microbiology, 23(7), 684–688.

    Article  CAS  PubMed  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—a review. Food and Bioprocess Technology, 98(1), 1–16.

    Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—a review. Food and Bioprocess Technology, 3(2), 161–171.

    Article  Google Scholar 

  • WHO. (2003). Diet, nutrition and the prevention of chronic diseases Report of a Joint WHO/FAO Expert Consultation. Geneva.

  • Zlatić, E., Zadnik, V., Fellman, J., Demšar, L., Hribar, J., & Željko, Č. (2016). Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf-life. Postharvest Biology and Technology, 117, 71–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author A.F. Devi would like to express her gratitude to the Endeavour Research Fellowship providing financial support during her research.

Author information

Authors and Affiliations

Authors

Contributions

AFD conducted the experiments, analysed the results, drafted and revised the manuscript. XNA conducted the experiments. RW designed and conducted the experiments. PS and PS provided technical assistance for microwave and retort equipment and collected data. TS collected and analysed data. SN collected data. TVG concepted, designed and conducted experiments, and revised the manuscript.

Corresponding author

Correspondence to Thambaramala V. Gamage.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, A.F., Au, X.N., Weerakkody, R. et al. Microwave Pasteurised Pear Snack: Quality and Microbiological Stability. Food Bioprocess Technol 14, 1615–1630 (2021). https://doi.org/10.1007/s11947-021-02642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02642-x

Keywords

Navigation