Skip to main content
Log in

Dielectric Properties of Cloudy Apple Juices Relevant to Microwave Pasteurization

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Continuous flow microwave heating is an emerging technology that brings advantages to the pasteurization of food products such as fruit juices. In order to correctly design the microwave cavity and applicator tube, knowing the dielectric properties of the product is important. The relative electrical permittivity describes the capacity to store electrical energy, while the dielectric loss factor describes the ability to dissipate energy as heat. The penetration depth of microwaves depends on these properties and on the field frequency. In this work, the dielectric properties and electrical conductivity of cloudy apple juices, obtained from different varieties of apples (Gala, Fuji, Granny Smith, and Red Delicious) and from an industrial plant (Gala), were determined from 500 to 3000 MHz and temperatures between 10 and 90 °C. Penetration depth was also calculated, and all results were correlated with temperature for commercial frequencies of 915 and 2450 MHz. At these frequencies, apple variety showed little influence and the permittivity decreased almost linearly with temperature. The loss factor curves showed a minimum around 40 °C at 915 MHz and were slightly smaller for juices with lower conductivity. At 2450 MHz, the loss factor varied between 7 and 18 with a negative temperature effect, which indicates that thermal runaway should not be a problem. The penetration depth ranged from 33 to 58 mm at 915 MHz and from 9 to 23 mm at 2450 MHz, depending on temperature and variety, which is useful information for the design of applicator tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a i :

Polynomial coefficient of order i

a w :

Water activity (–)

c :

Speed of light in free space (2.9979 × 108 m/s)

C σ :

Relative contribution of ionic conduction to the loss factor (%)

C d :

Relative contribution of dipole rotation to the loss factor (%)

d p :

Penetration depth (m)

e :

Euler number (2.7183)

f :

Field frequency (Hz)

R 2 :

Coefficient of determination

T :

Temperature (K)

TSS:

Total soluble solids (°Brix, %)

TTA:

Titratable acidity (g malic acid/100 mL)

ε :

Complex relative permittivity (–)

ε s :

Relative permittivity at zero frequency or DC circuit (–)

ε o :

Relative electrical permittivity of free space (8.854 × 10−12 F/m)

ε :

Relative permittivity at high frequencies (–)

ε′:

Relative electrical permittivity (–)

ε″:

Dielectric loss factor (–)

ε d :

Dielectric loss factor due to dipole rotation (–)

ε σ :

Dielectric loss factor due to ionic conduction (–)

π :

Pi number (3.1416)

σ :

Electrical conductivity, DC circuit (S/m)

σ est :

Standard error of estimate

τ :

Relaxation time (s)

ω :

Angular frequency (rad/s)

References

  • AOAC. (2010). Official methods of analysis of AOAC International. Washington: AOAC, Association of official analytical chemists.

    Google Scholar 

  • Cañumir, J. A., Celis, J. E., de Bruijn, J., & Vidal, L. V. (2002). Pasteurisation of apple juice by using microwaves. LWT - Food Science and Technology, 35(5), 389–392. doi:10.1006/fstl.2001.0865.

    Article  Google Scholar 

  • Castro-Giráldez, M., Fito, P. J., Chenoll, C., & Fito, P. (2010). Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Science & Emerging Technologies, 11(4), 749–754. doi:10.1016/j.ifset.2010.08.002.

    Article  Google Scholar 

  • Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—a review. Food Research International, 52(1), 243–261. doi:10.1016/j.foodres.2013.02.033.

    Article  CAS  Google Scholar 

  • Charrondière, U. R., Stadlmayr, B., Rittenschober, D., Mouille, B., Nilsson, E., Medhammar, E., Olango, T., Eisenwagen, S., Persijn, D., Ebanks, K., Nowak, V., Du, J., & Burlingame, B. (2013). FAO/INFOODS food composition database for biodiversity. Food Chemistry, 140(3), 408–412. doi:10.1016/j.foodchem.2012.08.049.

    Article  Google Scholar 

  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341–351. doi:10.1063/1.1750906.

    Article  CAS  Google Scholar 

  • Franco, A. P., Yamamoto, L. Y., Tadini, C. C., & Gut, J. A. W. (2015). Dielectric properties of green coconut water relevant to microwave processing: effect of temperature and field frequency. Journal of Food Engineering, 155, 69–78. doi:10.1016/j.jfoodeng.2015.01.011.

    Article  CAS  Google Scholar 

  • García, A., Torres, J. L., Prieto, E., & De Blas, M. (2001). Dielectric properties of grape juice at 0.2 and 3 GHz. Journal of Food Engineering, 48(3), 203–211. doi:10.1016/S0260-8774(00)00159-X.

    Article  Google Scholar 

  • Gentry, T. S., & Roberts, J. S. (2005). Design and evaluation of a continuous flow microwave pasteurization system for apple cider. LWT - Food Science and Technology, 38(3), 227–238. doi:10.1016/j.lwt.2004.05.016.

    Article  CAS  Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2007). 10–1800-MHz dielectric properties of fresh apples during storage. Journal of Food Engineering, 83(4), 562–569. doi:10.1016/j.jfoodeng.2007.04.009.

    Article  CAS  Google Scholar 

  • Guo, W., Zhu, X., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, 44(1), 224–230. doi:10.1016/j.lwt.2010.05.032.

    Article  CAS  Google Scholar 

  • Guyot, S., Marnet, N., Sanoner, P., & Drilleau, J. F. (2003). Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. Journal of Agricultural and Food Chemistry, 51(21), 6240–6247. doi:10.1021/jf0301798.

    Article  CAS  Google Scholar 

  • Hebbar, H. U., & Rastogi, N. K. (2012). Microwave heating of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 396–409). San Diego: Academic.

    Google Scholar 

  • Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—a review. Journal of Food Protection, 57(11), 1025–1037.

    Google Scholar 

  • Içier, F., & Baysal, T. (2004). Dielectrical properties of food materials—1: factors affecting and industrial uses. Critical Reviews in Food Science and Nutrition, 44(6), 465–471. doi:10.1080/10408690490886692.

    Article  Google Scholar 

  • Ikediala, J., Tang, J., Drake, S., & Neven, L. (2000). Dielectric properties of apple cultivars and codling moth larvae. Transactions of the ASAE - American Society of Agricultural Engineers, 43(5), 1175–1184.

    Article  Google Scholar 

  • Kaatze, U. (1989). Complex permittivity of water as a function of frequency and temperature. Journal of Chemical & Engineering Data, 34(4), 371–374. doi:10.1021/je00058a001.

    Article  CAS  Google Scholar 

  • Kimball, D. A. (1991). Citrus processing quality control and technology. New York: Chapman & Hall-ITP.

    Book  Google Scholar 

  • Kuang, W., & Nelson, S. O. (1997). Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz. Journal of Microwave Power and Electromagnetic Energy, 32(2), 114–122.

    Google Scholar 

  • Kumar, P., Coronel, P., Truong, V. D., Simunovic, J., Swartzel, K. R., Sandeep, K. P., & Cartwright, G. (2008). Overcoming issues associated with the scale-up of a continuous flow microwave system for aseptic processing of vegetable purees. Food Research International, 41(5), 454–461. doi:10.1016/j.foodres.2007.11.004.

    Article  CAS  Google Scholar 

  • Lanzerstorfer, P., Wruss, J., Huemer, S., Steininger, A., Müller, U., Himmelsbach, M., Borgmann, D., Winkler, S., Höglinger, O., & Weghuber, J. (2014). Bioanalytical characterization of apple juice from 88 grafted and nongrafted apple varieties grown in upper Austria. Journal of Agricultural and Food Chemistry, 62(5), 1047–1056. doi:10.1021/jf4051232.

    Article  CAS  Google Scholar 

  • Lyng, J. G., Arimi, J. M., Scully, M., & Marra, F. (2014). The influence of compositional changes in reconstituted potato flakes on thermal and dielectric properties and temperatures following microwave heating. Journal of Food Engineering, 124, 133–142. doi:10.1016/j.jfoodeng.2013.09.032.

    Article  CAS  Google Scholar 

  • Martín-Esparza, M. E., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (2006). Dielectric behavior of apple (var. Granny Smith) at different moisture contents: effect of vacuum impregnation. Journal of Food Engineering, 77(1), 51–56. doi:10.1016/j.jfoodeng.2005.06.018.

    Article  Google Scholar 

  • Nelson, S. O. (2005). Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz. Journal of Microwave Power and Electromagnetic Energy, 40(1), 31–47.

    Google Scholar 

  • Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 69–114). New York: Marcel Dekker.

    Google Scholar 

  • Nelson, S. O., Forbus, W. R., Jr., & Lawrence, K. C. (1994). Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz. Journal of Microwave Power and Electromagnetic Energy, 29(2), 81–93.

    CAS  Google Scholar 

  • Paganini, C., Nogueira, A., Denardi, F., & Wosiacki, G. (2004). Industrial fitness analysis of six apple cultivars, considering their physico-chemical evaluation. Ciencia e Agrotecnologia, 28(6), 1336–1343. doi:10.1590/S1413-70542004000600016.

    Article  Google Scholar 

  • Palaniappan, S., & Sastry, S. K. (1991). Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage and particle size. Journal of Food Process Engineering, 14(4), 247–260. doi:10.1111/j.1745-4530.1991.tb00135.x.

    Article  Google Scholar 

  • Reid, M. S., Padfield, C. A. S., Watkins, C. B., & Harman, J. E. (1982). Starch iodine pattern as a maturity index for Granny Smith apples: 1. Comparison with flesh firmness and soluble solids content. New Zealand Journal of Agricultural Research, 25(2), 229–237. doi:10.1080/00288233.1982.10420918.

    Article  Google Scholar 

  • Risman, P. (1991). Terminology and notation of microwave power and electromagnetic energy. Journal of Microwave Power and Electromagnetic Energy, 26(4), 243–250.

    Google Scholar 

  • Rizzon, L. A., Bernardi, J., & Miele, A. (2005). Analytical characteristics of Gala, Golden Delicious and Fuji apple juice from south of Brazil. Food Science and Technology, 25(4), 750–756. doi:10.1590/S0101-20612005000400020.

    CAS  Google Scholar 

  • Roebuck, B. D., Goldblith, S. A., & Westphal, W. B. (1972). Dielectric properties of carbohydrate-water mixtures at microwave frequencies. Journal of Food Science, 37(2), 199–204. doi:10.1111/j.1365-2621.1972.tb05816.x.

    Article  CAS  Google Scholar 

  • Ryynänen, S. (1995). The electromagnetic properties of food materials: a review of the basic principles. Journal of Food Engineering, 26(4), 409–429. doi:10.1016/0260-8774(94)00063-F.

    Article  Google Scholar 

  • Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5(1), 31–46. doi:10.1007/s11947-011-0639-y.

    Article  Google Scholar 

  • Salvi, D., Ortego, J., Arauz, C., Sabliov, C. M., & Boldor, D. (2009). Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating. Journal of Food Engineering, 93(2), 149–157. doi:10.1016/j.jfoodeng.2009.01.009.

    Article  Google Scholar 

  • Salvi, D., Boldor, D., Aita, G. M., & Sabliov, C. M. (2011). COMSOL Multiphysics model for continuous flow microwave heating of liquids. Journal of Food Engineering, 104(3), 422–429. doi:10.1016/j.jfoodeng.2011.01.005.

    Article  Google Scholar 

  • Seaman, R., & Seals, J. (1991). Fruit pulp and skin dielectric properties for 150 MHz to 6400 MHz. Journal of Microwave Power and Electromagnetic Energy, 26(2), 72–81.

    Google Scholar 

  • Shah, N. S., Shah, P. S., & Rana, V. A. (2015). Dielectric and electrical properties of coconut water and distilled water in the frequency range 20 Hz to 2 MHz at different temperatures. Ionics, 21(12), 3217–3222. doi:10.1007/s11581-015-1506-z.

    Article  CAS  Google Scholar 

  • Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010). Dielectric properties of foods: reported data in the 21st century and their potential applications. LWT - Food Science and Technology, 43(8), 1169–1179. doi:10.1016/j.lwt.2010.03.017.

    Article  CAS  Google Scholar 

  • Steed, L. E., Truong, V.-D., Simunovic, J., Sandeep, K. P., Kumar, P., Cartwright, G. D., & Swartzel, K. R. (2008). Continuous flow microwave-assisted processing and aseptic packaging of purple-fleshed sweet potato purees. Journal of Food Science, 73(9), E455–E462. doi:10.1111/j.1750-3841.2008.00950.x.

    Article  CAS  Google Scholar 

  • Stogryn, A. (1971). Equations for calculating the dielectric constant of saline water. IEEE Transactions on Microwave Theory and Techniques, 19(8), 733–736. doi:10.1109/TMTT.1971.1127617.

    Article  Google Scholar 

  • Tajchakavit, S., & Ramaswamy, H. S. (1995). Continuous-flow microwave heating of orange juice: evidence of nonthermal effects. Journal of Microwave Power and Electromagnetic Energy, 30(3), 141–148.

    Google Scholar 

  • Tajchakavit, S., Ramaswamy, H. S., & Fustier, P. (1998). Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Research International, 31(10), 713–722. doi:10.1016/S0963-9969(99)00050-2.

    Article  Google Scholar 

  • Tang, J. (2005). Dielectric properties of foods. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 22–40). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Tran, V. N., Stuchly, S. S., & Kraszewski, A. (1984). Dielectric properties of selected vegetables and fruits 0.1-10.0 GHz. Journal of Microwave Power and Electromagnetic Energy, 19(4), 251–258.

    Google Scholar 

  • Treptow, R. O., Queiroz, M. I., & Antunes, P. L. (1995). Physicochemical and sensorial of four apples (Malus domestica, Borkh) cultivars. Revista Brasileira de Agrociência, 1(3), 179–189.

    Google Scholar 

  • Wang, S., Tang, J., Johnson, J. A., Mitcham, E., Hansen, J. D., Hallman, G., Drake, S. R., & Wang, Y. (2003). Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering, 85(2), 201–212. doi:10.1016/S1537-5110(03)00042-4.

    Article  Google Scholar 

  • Yaylayan, V. A., & Roberts, D. D. (2001). Generation and release of food aromas under microwave heating. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 173–189). New York: Marcel Dekker.

    Google Scholar 

  • Zardo, D. M., Silva, K. M., Guyot, S., & Nogueira, A. (2013). Phenolic profile and antioxidant capacity of the principal apples produced in Brazil. International Journal of Food Sciences and Nutrition, 64(5), 611–620. doi:10.3109/09637486.2013.763909.

    Article  CAS  Google Scholar 

  • Zhang, H. (2005). Electrical properties of foods. In G. Barbosa-Canovas (Ed.), Food engineering at encyclopedia of life support systems. Paris: EOLSS/UNESCO.

    Google Scholar 

  • Zhu, J., Kuznetsov, A. V., & Sandeep, K. P. (2007). Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). International Journal of Thermal Sciences, 46(4), 328–341. doi:10.1016/j.ijthermalsci.2006.06.005.

    Article  Google Scholar 

  • Zhu, X., Guo, W., & Wu, X. (2012). Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109(2), 258–266. doi:10.1016/j.jfoodeng.2011.10.005.

    Article  CAS  Google Scholar 

  • Zhu, X., Guo, W., & Jia, Y. (2014). Temperature-dependent dielectric properties of raw cow’s and goat’s milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7(6), 1830–1839. doi:10.1007/s11947-014-1255-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the São Paulo Research Foundation (FAPESP) under grants 2012/04073-0, 2013/07914-8 and 2014/06026-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Andrey Wilhelms Gut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siguemoto, É.S., Gut, J.A.W. Dielectric Properties of Cloudy Apple Juices Relevant to Microwave Pasteurization. Food Bioprocess Technol 9, 1345–1357 (2016). https://doi.org/10.1007/s11947-016-1723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1723-0

Keywords

Navigation