Skip to main content

Advertisement

Log in

Qualities of High Pressure and Microwave-Assisted Thermally Pasteurized Ready-to-Eat Green Beans During Refrigerated Storage at 2 and 7 °C

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the impact of two pasteurization methods on the quality of ready-to-eat green beans during storage at 2 and 7 °C. Green beans were preheated to 45 °C, then subjected to high pressure processing (HPP) at 600 MPa, 20 min. Green beans were also pasteurized by a microwave-assisted pasteurization system (MAPS) with a minimum pasteurization value of P90 °C = 10 min. Total plate counts after the treatments were below the detection limit (< 10 CFU/g) but increased to ~ 105–6 CFU/g after 1 week at 7 °C and 4 weeks at 2 °C storage. We observed swelling in high pressure- and MAPS-treated pouches at 3 and 5 weeks of storage at 7 °C, respectively, along with a sharp pH reduction. Growth of Clostridium beijerinckii and Paenibacillus spp. was detected in the swollen and non-swollen pouches after 7 weeks of storage at 7 °C, respectively. Both treatments resulted in a similar reduction in a* value, hue angle, and chlorophyll a and b. Both methods resulted in reductions in firmness, yet HPP caused less reduction compared to MAPS. Based on observed package swelling and changes in pH values, the shelf life of the treated green beans was determined to be 6 weeks for HPP and 12 weeks for MAPS, respectively, when stored at 2 °C or less, and 2 and 3 weeks, respectively, when stored at 7 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data will be made available upon reasonable request.

References

  • Abu-Reidah, I. M., Arráez-Román, D., Lozano-Sánchez, J., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2013). Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using high-performance liquid chromatography coupled with time-of-flight mass spectrometry. Phytochem Anal, 24(2), 105–116.

  • Aguilar, C., Anzaldúa-Morales, A., Talamás, R., & Gastelum, G. (1997). Low-temperature blanch improves textural quality of French-fries. Journal of Food Science, 62(3), 568–571.

    Article  CAS  Google Scholar 

  • Ahmed, J., & Ramaswamy, H. S. (2006). Changes in colour during high pressure processing of fruits and vegetables. 1–8.

  • Akarca, G., Tomar, O., & Gök, V. (2015). Effect of different packaging methods on the quality of stuffed and sliced mozzarella cheese during storage. Journal of Food Processing and Preservation, 39(6), 2912–2918.

    Article  CAS  Google Scholar 

  • Al-Ghamdi, S., Rasco, B., Tang, J., Barbosa-Cánovas, G. V., & Sablani, S. S. (2019). Role of package headspace on multilayer films subjected to high hydrostatic pressure. Packaging Technology and Science, 32(5), 247–257.

    Article  CAS  Google Scholar 

  • André, S., Vallaeys, T., & Planchon, S. (2017). Spore-forming bacteria responsible for food spoilage. Research in Microbiology, 168(4), 379–387.

    Article  PubMed  Google Scholar 

  • Balasubramaniam, V., Barbosa-Cánovas, G. V., & Lelieveld, H. L. (editors) (2016). High pressure processing of food: Principles, Technology and Applications. Springer.

    Book  Google Scholar 

  • Basak, S., & Ramaswamy, H. (1998). Effect of high pressure processing on the texture of selected fruits and vegetables. Journal of Texture Studies, 29(5), 587–601.

    Article  Google Scholar 

  • Berge, O., Guinebretière, M. H., Achouak, W., Normand, P., & Heulin, T. (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology, 52(2), 607–616.

  • Betts, G. D., & Gaze, J. E. (1995). Growth and heat resistance of psychrotrophic Clostridium botulinum in relation to ‘sous vide’ products. Food Control, 6(1), 57–63.

    Article  Google Scholar 

  • Bornhorst, E. R., Tang, J., Sablani, S. S., & Barbosa-Cánovas, G. V. (2017). Thermal pasteurization process evaluation using mashed potato model food with Maillard reaction products. LWT-Food Science and Technology, 82, 454–463.

    Article  CAS  Google Scholar 

  • Butz, P., Edenharder, R., & Garcı́a, A. F., Fister, H., Merkel, C., & Tauscher, B. (2002). Changes in functional properties of vegetables induced by high pressure treatment. Food Research International, 35(2–3), 295–300.

    Article  CAS  Google Scholar 

  • Carlin, F., Guinebretiere, M.-H., Choma, C., Pasqualini, R., Braconnier, A., & Nguyen-the, C. (2000). Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees. Food Microbiology, 17(2), 153–165.

    Article  Google Scholar 

  • Chaurasia, S. (2020). Chapter 17—Green beans. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 289–300). Academic Press.

    Chapter  Google Scholar 

  • Crisley, F., Peeler, J., Angelotti, R., & Hall, H. (1968). Thermal resistance of spores of five strains of Clostridium botulinum type E in ground whitefish chubs. Journal of Food Science, 33(4), 411–416.

    Article  Google Scholar 

  • Daryaei, H., Balasubramaniam, V., & Legan, J. D. (2013). Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure–heat treatment. Journal of Food Protection, 76(4), 616–623.

    Article  PubMed  Google Scholar 

  • de Jesus, A. L. T., Leite, T. S., & Cristianini, M. (2018). High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): Effect on pulp color and inactivation of peroxidase and polyphenol oxidase. Food Research International, 105, 853–862.

    Article  PubMed  Google Scholar 

  • De Roeck, A., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2008). Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chemistry, 107(3), 1225–1235.

    Article  Google Scholar 

  • Durak, M. Z., Fromm, H. I., Huck, J. R., Zadoks, R. N., & Boor, K. J. (2006). Development of molecular typing methods for Bacillus spp. and Paenibacillus spp. isolated from fluid milk products. Journal of Food Science, 71(2), M50-M56.

  • Eklund, M., Peterson, M., Paranjpye, R., & Pelroy, G. (1988). Feasibility of a heat-pasteurization process for the inactivation of nonproteolytic Clostridium botulinum types B and E in vacuum-packaged, hot-process (smoked) fish. Journal of Food Protection, 51(9), 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Eliot, S., Vuillemard, J. C., & Emond, J. P. (1998). Stability of shredded Mozzarella cheese under modified atmospheres. Journal of Food Science, 63(6), 1075–1080.

    Article  CAS  Google Scholar 

  • Gaze, J. E., & Brown, G. (1990). Determination of the heat resistance of a strain of non-proteolytic Clostridium botulinum type B and a strain of type E, heated in cod and carrot homogenate over the temperature range 70 to 92°C. Gloucestershire: Campden Food and Drink Research Association.

  • González-Angulo, M., Clauwers, C., Harastani, R., Tonello, C., Jaime, I., Rovira, J., & Michiels, C. W. (2020). Evaluation of factors influencing the growth of non-toxigenic Clostridium botulinum type E and Clostridium sp. in high-pressure processed and conditioned tender coconut water from Thailand. Food Research International, 134, 109278.

  • Guinebretiere, M.-H., Berge, O., Normand, P., Morris, C., & Carlin, F. (2001). Identification of bacteria in pasteurized zucchini purees stored at different temperatures and comparison with those found in other pasteurized vegetable purees. Applied and Environmental Microbiology, 67(10), 4520–4530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmond, M., Groot, M. N. N., & van Bokhorst-van de Veen, H. (2017). Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals. International Journal of Food Microbiology, 252, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Heyndrickx, M. (2011). The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Applied and Environmental Soil Science, 2011.

  • Inanoglu, S., Barbosa-Cánovas, G. V., Patel, J., Zhu, M. J., Sablani, S. S., Liu, F., Tang, Z., & Tang, J. (2021). Impact of high-pressure and microwave-assisted thermal pasteurization on inactivation of Listeria innocua and quality attributes of green beans. Journal of Food Engineering, 288, 110162.

  • Juneja, V. K., Eblen, B. S., Marmer, B. S., Williams, A. C., Palumbo, S. A., & Miller, A. J. (1995). Thermal resistance of nonproteolytic type B and type E Clostridium botulinum spores in phosphate buffer and turkey slurry. Journal of Food Protection, 58(7), 758–763.

    Article  PubMed  Google Scholar 

  • Kmiha, S., Modugno, C., Aouadhi, C., Simonin, H., Mejri, S., Perrier-Cornet, J. M., & Maaroufi, A. (2021). Inhibitory effect of high hydrostatic pressure, nisin, and moderate heating on the inactivation of Paenibacillus sp. and Terribacillus aidingensis spores isolated from UHT milk. High Pressure Research, 1–13.

  • Knockaert, G., De Roeck, A., Lemmens, L., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2011). Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chemistry, 125(3), 903–912.

    Article  CAS  Google Scholar 

  • Koskiniemi, C. B., Truong, V.-D., McFeeters, R. F., & Simunovic, J. (2013). Quality evaluation of packaged acidified vegetables subjected to continuous microwave pasteurization. LWT-Food Science and Technology, 54(1), 157–164.

    Article  CAS  Google Scholar 

  • Krebbers, B., Koets, M., Van den Wall, F., Matser, A. M., Moezelaar, R., & Hoogerwerf, S. W. (2002a). Effects of high-pressure processing on the quality of green beans. In R. Hayashi (Ed.), Progress in biotechnology (Vol. 19, pp. 389–396): Elsevier.

  • Krebbers, B., Matser, A. M., Koets, M., & Van den Berg, R. W. (2002b). Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 54(1), 27–33.

    Article  Google Scholar 

  • Lau, M., Tang, J., & Swanson, B. (2000). Kinetics of textural and color changes in green asparagus during thermal treatments. Journal of Food Engineering, 45(4), 231–236.

    Article  Google Scholar 

  • Löhr, C. V., Polster, U., Kuhnert, P., Karger, A., Rurangirwa, F. R., & Teifke, J. P. (2011). Mesenteric lymphangitis and sepsis due to RTX toxin-producing Actinobacillus spp in 2 foals with hypothyroidism–dysmaturity syndrome. Veterinary Pathology, 49(4), 592–601.

    Article  PubMed  Google Scholar 

  • Luan, D., Tang, J., Pedrow, P. D., Liu, F., & Tang, Z. (2015). Performance of mobile metallic temperature sensors in high power microwave heating systems. Journal of Food Engineering, 149, 114–122.

    Article  Google Scholar 

  • Luan, D., Tang, J., Pedrow, P. D., Liu, F., & Tang, Z. (2016). Analysis of electric field distribution within a microwave assisted thermal sterilization (MATS) system by computer simulation. Journal of Food Engineering, 188, 87–97.

    Article  Google Scholar 

  • Marszałek, K., Woźniak, Ł, Skąpska, S., & Mitek, M. (2017). High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. Journal of Food Science and Technology, 54(3), 832–841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins, R., & Silva, C. (2004). Green beans (Phaseolus vulgaris, L.) quality loss upon thawing. Journal of Food Engineering, 65(1), 37–48.

  • McLellan, M. R., Lind, L. R., & Kime, R. W. (1995). Hue angle determinations and statistical analysis for multiquadrant Hunter L, a, b data. Journal of Food Quality, 18(3), 235–240.

    Article  Google Scholar 

  • Pandit, R. B., Tang, J., Liu, F., & Mikhaylenko, G. (2007). Computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition, 40(12), 3667–3676.

  • Patakova, P., Branska, B., Sedlar, K., Vasylkivska, M., Jureckova, K., Kolek, J., Koscova, P., & Provaznik, I. (2019). Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Scientific Reports, 9(1), 1–21.

    Article  CAS  Google Scholar 

  • Peng, J., Tang, J., Barrett, D. M., Sablani, S. S., Anderson, N., & Powers, J. R. (2017a). Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Critical Reviews in Food Science and Nutrition, 57(14), 2970–2995.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Tang, J., Luan, D., Liu, F., Tang, Z., Li, F., & Zhang, W. (2017b). Microwave pasteurization of pre-packaged carrots. Journal of Food Engineering, 202, 56–64.

    Article  CAS  Google Scholar 

  • Qu, Z., Tang, Z., Liu, F., Sablani, S. S., Ross, C. F., Sankaran, S., & Tang, J. (2021). Quality of green beans (Phaseolus vulgaris L.) influenced by microwave and hot water pasteurization. Food Control, 124, 107936.

  • Ragaert, P., Devlieghere, F., & Debevere, J. (2007). Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharvest Biology and Technology, 44(3), 185–194.

    Article  Google Scholar 

  • Reddy, N., Solomon, H., Fingerhut, G., Rhodehamel, E., Balasubramaniam, V., & Palaniappan, S. (1999). Inactivation of Clostridium botulinum type E spores by high pressure processing. Journal of Food Safety, 19(4), 277–288.

    Article  Google Scholar 

  • Reddy, N., Tetzloff, R., Solomon, H., & Larkin, J. (2006). Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innovative Food Science & Emerging Technologies, 7(3), 169–175.

    Article  CAS  Google Scholar 

  • San Martín, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627–645.

    Article  PubMed  Google Scholar 

  • Scott, V. N., & Bernard, D. T. (1982). Heat resistance of spores of non-proteolytic type B Clostridium botulinum. Journal of Food Protection, 45(10), 909–912.

    Article  PubMed  Google Scholar 

  • Sila, D. N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G. K., Hills, B. P., Waldron, K. K., Hendrickx, M., & Van Loey, A. (2008). Texture changes of processed fruits and vegetables: Potential use of high-pressure processing. Trends in Food Science & Technology, 19(6), 309–319.

    Article  CAS  Google Scholar 

  • Sila, D. N., Smout, C., Vu, T., & Hendrickx, M. (2004). Effects of high-pressure pretreatment and calcium soaking on the texture degradation kinetics of carrots during thermal processing. Journal of Food Science, 69(5), E205–E211.

    Article  CAS  Google Scholar 

  • Silva, F. V., & Gibbs, P. A. (2010). Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Trends in Food Science & Technology, 21(2), 95–105.

    Article  CAS  Google Scholar 

  • Simpson, M. V., Smith, J. P., Dodds, K., Ramaswamy, H. S., Blanchfield, B., & Simpson, B. K. (1995). Challenge studies with Clostridium botulinum in a sous-vide spaghetti and meat-sauce product. Journal of Food Protection, 58(3), 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, G. E., Morrissey, T. R., Patazca, E., Loeza, V., Halik, L. A., Schill, K. M., & Reddy, N. R. (2018). Effect of high pressures in combination with temperature on the inactivation of spores of nonproteolytic Clostridium botulinum types B and F. Journal of Food Protection, 81(2), 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Sonar, C. R., Parhi, A., Liu, F., Patel, J., Rasco, B., Tang, J., & Sablani, S. S. (2020). Investigating thermal and storage stability of vitamins in pasteurized mashed potatoes packed in barrier packaging films. Food Packaging and Shelf Life, 24, 100486.

  • Sonar, C. R., Rasco, B., Tang, J., & Sablani, S. S. (2019). Natural color pigments: Oxidative stability and degradation kinetics during storage in thermally pasteurized vegetable purees. Journal of the Science of Food and Agriculture, 99(13), 5934–5945.

    Article  CAS  PubMed  Google Scholar 

  • Sorenson, D., Henchion, M., Marcos, B., Ward, P., Mullen, A. M., & Allen, P. (2011). Consumer acceptance of high pressure processed beef-based chilled ready meals: The mediating role of food-related lifestyle factors. Meat Science, 87(1), 81–87.

    Article  PubMed  Google Scholar 

  • Tang, J., Hong, Y.-K., Inanoglu, S., & Liu, F. (2018). Microwave pasteurization for ready-to-eat meals. Current Opinion in Food Science, 23, 133–141.

    Article  Google Scholar 

  • Tang, J., Liu, F. (2020). Microwave sterilization or pasteurization transport carrier, US Patent No.10,681923.

  • Valero, A., Carrasco, E., Pérez-Rodríguez, F., García-Gimeno, R., Blanco, C., & Zurera, G. (2006). Monitoring the sensorial and microbiological quality of pasteurized white asparagus at different storage temperatures. Journal of the Science of Food and Agriculture, 86(8), 1281–1288.

    Article  CAS  Google Scholar 

  • Van Loey, A., Ooms, V., Weemaes, C., Van den Broeck, I., Ludikhuyze, L., Indrawati, Denys, S., & Hendrickx, M. (1998). Thermal and pressure-temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: A kinetic study. Journal of Agricultural and Food Chemistry, 46(12), 5289–5294.

  • Vervoort, L., Van der Plancken, I., Grauwet, T., Verlinde, P., Matser, A., Hendrickx, M., & Van Loey, A. (2012). Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis. Innovative Food Science & Emerging Technologies, 15, 1–13.

    Article  Google Scholar 

  • Vithanage, N. R., Dissanayake, M., Bolge, G., Palombo, E. A., Yeager, T. R., & Datta, N. (2016). Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, 57, 80–90.

    Article  CAS  Google Scholar 

  • Wachnicka, E., Stringer, S. C., Barker, G. C., & Peck, M. W. (2016). Systematic assessment of nonproteolytic Clostridium botulinum spores for heat resistance. Applied and Environmental Microbiology, 82(19), 6019–6029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weemaes, C. A., Ooms, V., Van Loey, A. M., & Hendrickx, M. E. (1999). Kinetics of chlorophyll degradation and color loss in heated broccoli juice. Journal of Agricultural and Food Chemistry, 47(6), 2404–2409.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz, S., Pokhrel, P. R., Unluturk, S., & Barbosa-Cánovas, G. V. (2021). Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes. Food Research International, 140, 110040.

  • Zhang, H., Bhunia, K., Kuang, P., Tang, J., Rasco, B., Mattinson, D. S., & Sablani, S. S. (2016). Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato. Food and Bioprocess Technology, 9(2), 341–351.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the USDA-NIFA Food Safety Grant (2016–68003-24840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juming Tang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inanoglu, S., Barbosa-Cánovas, G.V., Tang, Z. et al. Qualities of High Pressure and Microwave-Assisted Thermally Pasteurized Ready-to-Eat Green Beans During Refrigerated Storage at 2 and 7 °C. Food Bioprocess Technol 15, 105–119 (2022). https://doi.org/10.1007/s11947-021-02736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02736-6

Keywords

Navigation