Skip to main content
Log in

Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Use of microwaves has increased largely in the domestic household in the last few decades due to the convenience of using microwave ovens. In the industrial sector, microwave processing is used in some of the unit operations, while it is yet to capture a major place in the industrial applications. The major drawback associated with microwave heating is the non-uniform temperature distribution, resulting in hot and cold spots in the heated product. The non-uniform temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms may not be destroyed in the cold spots. The temperature distribution during microwave heating has been studied in a wide variety of products by several researchers. This paper summarizes their results and the solutions offered by them to lessen the non-uniformity of heating. The current applications of microwave energy in the industrial sector are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adu, B., & Otten, L. (1996). Microwave heating and mass transfer characteristics of white beans. Journal of Agricultural Engineering Research, 64(1), 71–78. doi:10.1006/jaer.1996.0047.

    Article  Google Scholar 

  • Ahmed, J., & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed., pp. 691–711). Florida, USA: CRC Press.

    Google Scholar 

  • Aleixo, J. A. G., Swaminathan, B., Jamesen, K. S., & Pratt, D. E. (1985). Destruction of pathogenic bacteria in turkeys roasted in microwave ovens. Journal of Food Science, 50(4), 873–875. doi:10.1111/j.1365-2621.1985.tb12969.x.

    Article  Google Scholar 

  • Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1991). Analysis of microwave heating of materials with temperature dependent properties. AlChe Journal, 37(3), 313–322.

    CAS  Google Scholar 

  • Ayappa, K. G., Davis, H. T., Davis, E. A., & Gordon, J. (1992). Two dimensional finite element analysis of microwave heating. AlChe Journal, 38(10), 1577–1592.

    CAS  Google Scholar 

  • Barringer, S. A., Davis, E. A., Gordon, J., Ayappa, K. G., & Davis, H. T. (1995). Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions. Journal of Food Science, 60(5), 1137–1142. doi:10.1111/j.1365-2621.1995.tb06309.x.

    Article  CAS  Google Scholar 

  • Blaszczak, W., Gralik, J., Klockiewicz-kaminska, E., Fornal, J., & Warchalewski, J. R. (2002). Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain. Nahrung/Food, 46(2), 122–129.

    Article  CAS  Google Scholar 

  • Boyaci, I. H., Sumnu, G., & Sakiyan, O. (2008). Estimation of dielectric properties of cakes based on porosity, moisture content and formulations using statistical methods and artificial neural networks. Food and Bioprocess Technology, in press.

  • Boyes, S., Chevis, P., Holden, J., & Perera, C. (1997). Microwave and water blanching of corn kernels: Control of uniformity of heating during microwave heating. Journal of Food Processing and Preservation, 21(6), 461–484. doi:10.1111/j.1745-4549.1997.tb00796.x.

    Article  Google Scholar 

  • Buffler, C. R. (1992). Microwave cooking and processing (pp. 14–83). New York, USA: Van Nostrand Reinhold.

    Google Scholar 

  • Burfoot, D., Griffin, W. J., & James, S. J. (1988). Microwave pasteurization of prepared meals. Journal of Food Engineering, 8(3), 145–156. doi:10.1016/0260-8774(88)90050-7.

    Article  Google Scholar 

  • Campanone, L. A., & Zaritzky, N. E. (2005). Mathematical analysis of microwave heating process. Journal of Food Engineering, 69(3), 359–368. doi:10.1016/j.jfoodeng.2004.08.027.

    Article  Google Scholar 

  • Carlin, F., Zimmermann, W., & Sundberg, A. (1982). Destruction of Trichina larvae in beef-pork loaves cooked in microwave ovens. Journal of Food Science, 47(4), 1096–1099. doi:10.1111/j.1365-2621.1982.tb07626.x.

    Article  Google Scholar 

  • Chen, D. D., Singh, R. K., Haghighi, K., & Nelson, P. E. (1993). Finite element analysis of temperature distribution in microwaved cylindrical potato tissue. Journal of Food Engineering, 18(4), 351–368. doi:10.1016/0260-8774(93)90052-L.

    Article  Google Scholar 

  • Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.

    CAS  Google Scholar 

  • Datta, A. K., Geedipalli, S. S. R., & Almeida, M. F. (2005). Microwave combination heating. Food Technologist, 59(1), 36–40.

    Google Scholar 

  • Datta, A. K., & Ni, H. (2002). Infrared and hot-air assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364. doi:10.1016/S0260-8774(01)00079-6.

    Article  Google Scholar 

  • Datta, A. K., Prosetya, H., & Hu, W. (1992). Mathematical modeling of batch heating of liquids in a microwave cavity. Journal of Microwave Power and Electromagnetic Energy, 27(1), 101–110.

    Google Scholar 

  • Decareau, R. V. (1985). Microwaves in the food processing Industry. Natick, MA: Academic.

    Google Scholar 

  • Decareau, R. V. (1992). Microwave foods: New product development. Connecticut, USA: Food and Nutrition Press.

    Google Scholar 

  • Fakhouri, M. O., & Ramaswamy, H. S. (1993). Temperature uniformity of microwave heated foods as influenced by product type and composition. Food Research International, 26(2), 89–95. doi:10.1016/0963-9969(93)90062-N.

    Article  Google Scholar 

  • Fu, Y. C. (2004). Fundamentals and Industrial applications of microwave and radio frequency in food processing. In J. S. Smith, & Y. H. Hui (Eds.), Food processing: Principles and applications (pp. 79–100). Iowa, USA: Blackwell.

    Google Scholar 

  • Funawatashi, Y., & Suzuki, T. (2003). Numerical analysis of microwave heating of a dielectric. Heat Transfer-Asian Research, 32(3), 227–236. doi:10.1002/htj.10087.

    Article  Google Scholar 

  • Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38(3), 353–367. doi:10.1016/S0260-8774(98)00131-9.

    Article  Google Scholar 

  • Fung, D. Y. C., & Cunningham, F. E. (1980). Effect of microwaves on microorganisms in foods. Journal of Food Protection, 43(8), 641–650.

    Google Scholar 

  • Gehlar, M., & Regmi, A. (2005). New directions in global food Markets: Factors shaping global food markets. Economics Research Service, USDA. Retrieves 2 April 2006 from http://www.ers.usda.gov/publications/aib794/aib794.pdf.

  • Goksoy, E. O., James, C., & James, S. J. (1999). Non-uniformity of surface temperatures after microwave heating of poultry meat. Journal of Microwave Power and Electromagnetic Energy, 34(3), 149–160.

    CAS  Google Scholar 

  • Gowen, A., Abu-Ghannam, N., Frias, J., & Oliveira, J. (2006). Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave-hot air combination drying. Trends in Food Science & Technology, 17(4), 177–183. doi:10.1016/j.tifs.2005.11.013.

    Article  CAS  Google Scholar 

  • Gunasekaran, S. (1990). Grain drying using continuous and pulsed microwave energy. Drying Technology, 8(5), 1039–1047. doi:10.1080/07373939008959934.

    Article  Google Scholar 

  • Gunasekaran, S., & Yang, H. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. doi:10.1016/j.jfoodeng.2006.01.017.

    Article  Google Scholar 

  • Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359–368. doi:10.1016/j.jfoodeng.2007.02.050.

    Article  Google Scholar 

  • Ho, Y. C., & Yam, K. L. (1992). Effect of metal shielding on microwave heating uniformity of a cylindrical food model. Journal of Food Processing and Preservation, 16(5), 337–359. doi:10.1111/j.1745-4549.1992.tb00214.x.

    Article  Google Scholar 

  • James, C., Swain, M. V., James, S. J., & Swain, M. J. (2002). Development of methodology for assessing the heating performance of domestic microwave ovens. International Journal of Food Science & Technology, 37(8), 879–892. doi:10.1046/j.1365-2621.2002.00636.x.

    Article  CAS  Google Scholar 

  • Jeong, J. Y., Lee, E. S., Choi, J. H., Lee, J. Y., Kim, J. M., Min, S. G., et al. (2007). Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Science, 75(3), 415–422. doi:10.1016/j.meatsci.2006.08.010.

    Article  CAS  Google Scholar 

  • Kelen, A., Ress, S., Nagy, T., Pallai, E., & Pintye-Hodi, K. (2006). Mapping of temperature distribution in pharmaceutical microwave vacuum drying. Powder Technology, 162(2), 133–137. doi:10.1016/j.powtec.2005.12.001.

    Article  CAS  Google Scholar 

  • Krokida, M. K., Maroulis, Z. B., & Saravacos, G. D. (2001). The effect of the method of drying on the color of dehydrated products. International Journal of Food Science & Technology, 36(1), 53–59. doi:10.1046/j.1365-2621.2001.00426.x.

    Article  CAS  Google Scholar 

  • Lee, M. L., Gray, I., & Pearson, A. M. (1983). Effects of frying procedures and compositional factors on the temperature profile of bacon. Journal of Food Science, 48(3), 817–819. doi:10.1111/j.1365-2621.1983.tb14907.x.

    Article  Google Scholar 

  • Lee, D. S., Shin, D., & Yam, K. L. (2002). Improvement of temperature uniformity in microwave-reheated rice by optimizing heat/cold cycle. Food Service Technology, 2(2), 87–93. doi:10.1046/j.1471-5740.2002.00035.x.

    Article  Google Scholar 

  • Lin, Y. E., Anantheswaran, R. C., & Puri, V. M. (1995). Finite element analysis of microwave heating of solid foods. Journal of Food Engineering, 25(1), 85–112. doi:10.1016/0260-8774(94)00008-W.

    Article  Google Scholar 

  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117. doi:10.1016/S0963-9969(98)00070-2.

    Article  Google Scholar 

  • Mallikarjunan, P., Hung, Y. C., & Gundavarapu, S. (1996). Modeling microwave cooking of cocktail shrimp. Journal of Food Process Engineering, 19(1), 97–111. doi:10.1111/j.1745-4530.1996.tb00383.x.

    Article  Google Scholar 

  • Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567. doi:10.1080/07373930601030796.

    Article  CAS  Google Scholar 

  • Manickavasagan, A., Jayas, D. S., White, N. D. G., & Paliwal, J. (2008). Wheat class identification using thermal imaging. Food and Bioprocess Technology, in press.

  • Mullin, J. (1995). Microwave processing. In G. W. Gould (Ed.), New methods of food preservation (pp. 112–134). Bishopbriggs, UK: Blackie Academic and Professional.

    Google Scholar 

  • Mullin, J., & Bows, J. (1993). Temperature measurements during microwave cooking. Food Additives and Contaminants, 10(6), 663–672.

    CAS  Google Scholar 

  • Ni, H., & Datta, A. K. (1999). Moisture loss as related to heating uniformity in microwave processing of solid foods. Journal of Food Process Engineering, 22(5), 367–382. doi:10.1111/j.1745-4530.1999.tb00492.x.

    Article  Google Scholar 

  • Ohlsson, T., & Thorsell, U. (1984). Problems in microwave reheating of chilled foods. Journal of Foodservice Systems, 3, 9–16.

    Google Scholar 

  • Oliveira, M. E. C., & Franca, A. S. (2002). Microwave heating of foodstuffs. Journal of Food Engineering, 53(4), 347–359. doi:10.1016/S0260-8774(01)00176-5.

    Article  Google Scholar 

  • Raaholt, B. W., & Ohlsson, T. (2000). Tools for improving the heating uniformity of foods heated in a microwave oven. Microwave World, 21(1), 24–28.

    Google Scholar 

  • Ramaswamy, H. S., Pillet, T., & Fakhouri, M. (1991). Distribution and equalization of temperature in a microwave heated food model. ASAE Paper No. 913518. St. Joseph, MI.

  • Ramaswamy, H. S., & Pillet-Will, T. (1992). Temperature distribution in microwave heated food models. Journal of Food Quality, 15(6), 435–448. doi:10.1111/j.1745-4557.1992.tb00969.x.

    Article  Google Scholar 

  • Rattanadecho, P. (2004). Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). International Journal of Heat and Mass Transfer, 47(5), 937–945. doi:10.1016/j.ijheatmasstransfer.2003.08.019.

    Article  Google Scholar 

  • Romano, V. R., Marra, F., & Tammaro, U. (2005). Modelling of microwave heating of foodstuff: Study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 71(3), 233–241. doi:10.1016/j.jfoodeng.2004.11.036.

    Article  Google Scholar 

  • Rosenberg, U., & Bogl, W. (1987). Microwave pasteurization, sterilization, blanching, and pest control in the food industry. Food Technologist, 41(6), 92–97.

    Google Scholar 

  • Ryynanen, S., & Ohlsson, T. (1996). Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. Journal of Food Sciences, 61(3), 620–624. doi:10.1111/j.1365-2621.1996.tb13171.x.

    Article  Google Scholar 

  • Ryynanen, S., Tuorila, H., & Hyvonen, L. (2001). Perceived temperature effects on microwave heated meals and meal components. Food Service Technology, 1(3), 141–148. doi:10.1046/j.1471-5740.2001.d01-4.x.

    Article  Google Scholar 

  • Sakai, N., & Wang, C. (2004). An analysis of temperature distribution in microwave heating of foods with non-uniform dielectric properties. Journal of Chemical Engineering of Japan, 37(7), 858–862. doi:10.1252/jcej.37.858.

    Article  CAS  Google Scholar 

  • Schiffmann, R. F. (2001). Microwave processes for the food industry. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 229–335). New York, USA: Marcel Dekker.

    Google Scholar 

  • Tewari, G. (2007). Microwave and radio-frequency heating. In G. Tewari & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 91–98 & 131–143). Iowa, USA: Blackwell.

    Chapter  Google Scholar 

  • Vilayannur, R. S., Puri, V. M., & Anantheswaran, R. C. (1998). Size and shape effect on non-uniformity of temperature and moisture distributions in microwave heated food materials: Part 1 Simulation. Journal of Food Process Engineering, 21(3), 209–233. doi:10.1111/j.1745-4530.1998.tb00448.x.

    Article  Google Scholar 

  • Warchalewski, J. R., Gralik, J., Wojtasiak, R. Z., Zabielski, J., & Kusnnierz, R. (1998). The evaluation of wheat grain odour and colour after gamma and microwave irradiation. Electronic Journal of Polish Agricultural Universities, 1(1), 1–11.

    Google Scholar 

  • Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64(4), 445–453. doi:10.1016/j.jfoodeng.2003.08.016.

    Article  Google Scholar 

  • Zhang, H., Bonneveau, L. H., Yout, W., Helstern, G. C., & Loizeau, G. (2004). Uniform microwave heating of food in a container. US Patent 6,777,655.

    Google Scholar 

  • Zhao, Y., Flugstad, B., Kolbe, E., Park, J. W., & Wells, J. H. (2000). Using capacitive (radio frequency) dielectric heating in food processing and preservation- a review. Journal of Food Process Engineering, 23(1), 25–55. doi:10.1111/j.1745-4530.2000.tb00502.x.

    Article  Google Scholar 

  • Zhou, L., Puri, V. M., & Anantheswaran, R. C. (1995). Finite element modeling of heat and mass transfer in food materials during microwave heating- Model development and validation. Journal of Food Engineering, 25(4), 509–529. doi:10.1016/0260-8774(94)00032–5.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Canada Research Chairs program and the Natural Sciences and Engineering Research Council of Canada for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Jayas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadivambal, R., Jayas, D.S. Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food Bioprocess Technol 3, 161–171 (2010). https://doi.org/10.1007/s11947-008-0136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0136-0

Keywords

Navigation