Skip to main content
Log in

Micro-Finite Element Analysis of the Proximal Femur on the Basis of High-Resolution Magnetic Resonance Images

  • Imaging (T Lang and F Wehrli, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hip fractures have catastrophic consequences. The purpose of this article is to review recent developments in high-resolution magnetic resonance imaging (MRI)-guided finite element analysis (FEA) of the hip as a means to determine subject-specific bone strength.

Recent Findings

Despite the ability of DXA to predict hip fracture, the majority of fractures occur in patients who do not have BMD T scores less than − 2.5. Therefore, without other detection methods, these individuals go undetected and untreated. Of methods available to image the hip, MRI is currently the only one capable of depicting bone microstructure in vivo. Availability of microstructural MRI allows generation of patient-specific micro-finite element models that can be used to simulate real-life loading conditions and determine bone strength.

Summary

MRI-based FEA enables radiation-free approach to assess hip fracture strength. With further validation, this technique could become a potential clinical tool in managing hip fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nih Consensus Development Panel on Osteoporosis Prevention D, Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  Google Scholar 

  3. Cooper Z, Mitchell SL, Lipsitz S, Harris MB, Ayanian JZ, Bernacki RE, et al. Mortality and readmission after cervical fracture from a fall in older adults: comparison with hip fracture using national Medicare data. J Am Geriatr Soc. 2015;63(10):2036–42.

    Article  Google Scholar 

  4. Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc. 2002;50(10):1644–50.

    Article  Google Scholar 

  5. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929–36.

    Article  Google Scholar 

  6. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9.

    Article  Google Scholar 

  7. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.

    Article  CAS  Google Scholar 

  8. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.

    Article  Google Scholar 

  9. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    Article  CAS  Google Scholar 

  10. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.

    Article  CAS  Google Scholar 

  11. Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–411.

    Article  CAS  Google Scholar 

  12. Bonnick SL. HSA: beyond BMD with DXA. Bone. 2007;41(1 Suppl 1):S9–12.

    PubMed  Google Scholar 

  13. Beck TJ, Broy SB. Measurement of hip geometry-technical background. J Clin Densitom. 2015;18(3):331–7.

    Article  Google Scholar 

  14. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.

    Article  Google Scholar 

  15. Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom. 2014;17(4):438–48.

    Article  Google Scholar 

  16. Lang TF, Saeed IH, Streeper T, Carballido-Gamio J, Harnish RJ, Frassetto LA, et al. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J Bone Miner Res. 2014;29(6):1337–45.

    Article  Google Scholar 

  17. Treece GM, Gee AH, Tonkin C, Ewing SK, Cawthon PM, Black DM, et al. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2015;30(11):2067–77.

    Article  Google Scholar 

  18. Johannesdottir F, Turmezei T, Poole KE. Cortical bone assessed with clinical computed tomography at the proximal femur. J Bone Miner Res. 2014;29(4):771–83.

    Article  Google Scholar 

  19. Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann N Y Acad Sci. 2010;1192:57–65.

    Article  Google Scholar 

  20. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. 2001;23(9):657–64.

    Article  CAS  Google Scholar 

  21. Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 2013;11(2):147–55.

    Article  Google Scholar 

  22. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.

    Article  Google Scholar 

  23. Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging. 2007;25(2):390–409.

    Article  Google Scholar 

  24. Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, et al. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging. 2017;46(2):323–37.

    Article  Google Scholar 

  25. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res. 1998;13(7):1175–82.

    Article  CAS  Google Scholar 

  26. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12(1):111–8.

    Article  CAS  Google Scholar 

  27. Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology. 1998;206(2):347–57.

    Article  CAS  Google Scholar 

  28. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16(11):1307–14.

    Article  Google Scholar 

  29. • Chang G, Deniz CM, Honig S, Rajapakse CS, Egol K, Regatte RR, et al. Feasibility of three-dimensional MRI of proximal femur microarchitecture at 3 tesla using 26 receive elements without and with parallel imaging. J Magn Reson Imaging. 2014;40(1):229–38 This study demonstrates the feasibility of generating microstructural MR images in human subjects.

    Article  Google Scholar 

  30. • Han M, Chiba K, Banerjee S, Carballido-Gamio J, Krug R. Variable flip angle three-dimensional fast spin-echo sequence combined with outer volume suppression for imaging trabecular bone structure of the proximal femur. J Magn Reson Imaging. 2015;41(5):1300–10 This study demonstrates the feasibility of generating microstructural MR images in human subjects.

    Article  Google Scholar 

  31. Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone. 2017;108:71–8.

    Article  Google Scholar 

  32. van Rietbergen B, Majumdar S, Newitt D, MacDonald B. High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon). 2002;17(2):81–8.

    Article  Google Scholar 

  33. Al Mukaddam M, Rajapakse CS, Bhagat YA, Wehrli FW, Guo W, Peachey H, et al. Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism. J Clin Endocrinol Metab. 2014;99(4):1236–44.

    Article  Google Scholar 

  34. Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, et al. The efficacy of low-intensity vibration to improve bone health in patients with end-stage renal disease is highly dependent on compliance and muscle response. Acad Radiol. 2017;24(11):1332–42.

    Article  Google Scholar 

  35. Wehrli FW, Rajapakse CS, Magland JF, Snyder PJ. Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res. 2010;25(6):1406–14.

    Article  CAS  Google Scholar 

  36. Zhang XH, Liu XS, Vasilic B, Wehrli FW, Benito M, Rajapakse CS, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23(9):1426–34.

    Article  Google Scholar 

  37. Lam SC, Wald MJ, Rajapakse CS, Liu Y, Saha PK, Wehrli FW. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone. 2011;49(4):895–903.

    Article  Google Scholar 

  38. Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF, Wehrli FW. Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology. 2012;262(3):912–20.

    Article  Google Scholar 

  39. Rajapakse CS, Phillips EA, Sun W, Wald MJ, Magland JF, Snyder PJ, et al. Vertebral deformities and fractures are associated with MRI and pQCT measures obtained at the distal tibia and radius of postmenopausal women. Osteoporos Int. 2014;25(3):973–82.

    Article  CAS  Google Scholar 

  40. Wald MJ, Magland JF, Rajapakse CS, Bhagat YA, Wehrli FW. Predicting trabecular bone elastic properties from measures of bone volume fraction and fabric on the basis of micromagnetic resonance images. Magn Reson Med. 2012;68(2):463–73.

    Article  Google Scholar 

  41. Wald MJ, Magland JF, Rajapakse CS, Wehrli FW. Structural and mechanical parameters of trabecular bone estimated from in vivo high-resolution magnetic resonance images at 3 tesla field strength. J Magn Reson Imaging. 2010;31(5):1157–68.

    Article  Google Scholar 

  42. Bhagat YA, Rajapakse CS, Magland JF, Love JH, Wright AC, Wald MJ, et al. Performance of muMRI-based virtual bone biopsy for structural and mechanical analysis at the distal tibia at 7T field strength. J Magn Reson Imaging. 2011;33(2):372–81.

    Article  Google Scholar 

  43. Chang G, Rajapakse CS, Babb JS, Honig SP, Recht MP, Regatte RR. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J Bone Miner Metab. 2012;30(2):243–51.

    Article  Google Scholar 

  44. Chang G, Rajapakse CS, Diamond M, Honig S, Recht MP, Weiss DS, et al. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers. Osteoporos Int. 2013;24(4):1407–17.

    Article  CAS  Google Scholar 

  45. Rajapakse CS, Magland J, Zhang XH, Liu XS, Wehrli SL, Guo XE, et al. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res. 2009;27(10):1263–71.

    Article  Google Scholar 

  46. Zhang N, Magland JF, Rajapakse CS, Bhagat YA, Wehrli FW. Potential of in vivo MRI-based nonlinear finite-element analysis for the assessment of trabecular bone post-yield properties. Med Phys. 2013;40(5). 052303.

    Article  Google Scholar 

  47. Zhang N, Magland JF, Rajapakse CS, Lam SB, Wehrli FW. Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of premenopausal and postmenopausal women susceptible to osteoporosis. Acad Radiol. 2013;20(12):1584–91.

    Article  Google Scholar 

  48. Carballido-Gamio J, Harnish R, Saeed I, Streeper T, Sigurdsson S, Amin S, et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res. 2013;28(3):537–46.

    Article  Google Scholar 

  49. Engelke K, Nagase S, Fuerst T, Small M, Kuwayama T, Deacon S, et al. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res. 2014;29(3):629–38.

    Article  CAS  Google Scholar 

  50. Yang L, Sycheva AV, Black DM, Eastell R. Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial. Osteoporos Int. 2013;24(1):329–38.

    Article  CAS  Google Scholar 

  51. Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.

    Article  CAS  Google Scholar 

  52. Keyak JH, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, Kornak J, et al. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone. 2013;57(1):18–29.

    Article  CAS  Google Scholar 

  53. Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25(2):619–26.

    Article  CAS  Google Scholar 

  54. Rajapakse CS, Magland JF, Wald MJ, Liu XS, Zhang XH, Guo XE, et al. Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone. 2010;47(3):556–63.

    Article  Google Scholar 

  55. • Chang G, Honig S, Brown R, Deniz CM, Egol KA, Babb JS, et al. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology. 2014;272(2):464–74 This study demontrate the usefulness of MRI-based FEA for assessment of proximal femur bone quality beyond the capabilities of DXA.

    Article  Google Scholar 

  56. •• Rajapakse CS, Hotca A, Newman BT, Ramme A, Vira S, Kobe EA, et al. Patient-specific hip fracture strength assessment with microstructural mr imaging-based finite element modeling. Radiology. 2017;283(3):854–61 This study provides the technical details on how to implement nonlinear FEA on the basis of high-resolution MRI to determine the fracture strength of the proximal femur under real-life loading conditions.

    Article  Google Scholar 

  57. Chang G, Hotca-Cho A, Rusinek H, Honig S, Mikheev A, Egol K, et al. Measurement reproducibility of magnetic resonance imaging-based finite element analysis of proximal femur microarchitecture for in vivo assessment of bone strength. MAGMA. 2015;28(4):407–12.

    Article  CAS  Google Scholar 

  58. Chang G, Rajapakse CS, Regatte RR, Babb J, Saxena A, Belmont HM, et al. 3 Tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls. J Magn Reson Imaging. 2015;42(6):1489–96.

    Article  Google Scholar 

  59. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA. 1994;271(2):128–33.

    Article  CAS  Google Scholar 

  60. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23(3):165–73.

    Article  CAS  Google Scholar 

  61. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chamith S. Rajapakse.

Ethics declarations

Conflict of Interest

Chamith Rajapakse and Gregory Chang have a patent pending (62/593,626).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapakse, C.S., Chang, G. Micro-Finite Element Analysis of the Proximal Femur on the Basis of High-Resolution Magnetic Resonance Images. Curr Osteoporos Rep 16, 657–664 (2018). https://doi.org/10.1007/s11914-018-0481-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0481-5

Keywords

Navigation