Skip to main content

Advertisement

Log in

Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We used new approaches to the analysis of diagnostic scans to detect changes in bone density in different regions of the hip after 3 years of treatment with the zoledronic acid. We showed that the drug significantly increases hip bone density compared to placebo at regions where hip fractures usually occur.

Introduction

This study aims to identify whether treatment with zoledronic acid exerts site-specific differential effects on volumetric bone mineral density (vBMD) at the hip.

Methods

We analysed quantitative computed tomography scans of the hip obtained at baseline and 36 months in 179 women participating in the HORIZON Pivotal Fracture Trial. Cortical, trabecular and integral BMDs were determined at three main regions of interest—the femoral neck (FN), trochanter (TR) and total hip (TH)—and several sub-regions of interest, namely the proximal, middle, distal, anterior, posterior, inferomedial and superolateral FN, and the middle and distal TR.

Results

Volumetric BMD increased significantly (p < 0.05) from baseline with zoledronic acid compared to placebo. Trabecular vBMD increased as follows: FN, 5.4 %; FN sub-regions, 6.0 % (proximal), 4.4 % (middle), 5.6 % (distal), 7.5 % (anterior), 7.0 % (superolateral) and 5.4 % (posterior); TR, 6.5 % and TH, 5.7 %. Cortical vBMD increased as follows: FN sub-regions, 5.0 % (proximal FN) and 2.3 % (anterior); TR, 4.6 %; middle TR, 2.7 % and TH, 3.8 %.

Conclusions

The effects on vBMD of annual infusion of 5 mg of zoledronic acid are site-specific and dominated by trabecular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  2. Poole KE, Mayhew PM, Rose CM, Brown JK, Bearcroft PJ, Loveridge N, Reeve J (2009) Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res 25:482–491

    Article  Google Scholar 

  3. Thomas CD, Mayhew PM, Power J, Poole KE, Loveridge N, Clement JG, Burgoyne CJ, Reeve J (2009) Femoral neck trabecular bone: loss with ageing and role in preventing fracture. J Bone Miner Res 24(11):1808–1818

    Article  PubMed  Google Scholar 

  4. de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P (2009) During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech 42:1917–1925

    Article  PubMed  Google Scholar 

  5. Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Miner Res 26:881–893

    Article  PubMed  Google Scholar 

  6. Bouxsein ML, Fajardo RJ (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523–1524

    Article  PubMed  Google Scholar 

  7. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261

    Article  PubMed  CAS  Google Scholar 

  8. Werner C, Iversen BF, Therkildsen MH (1988) Contribution of the trabecular component to mechanical strength and bone mineral content of the femoral neck. An experimental study on cadaver bones. Scand J Clin Lab Invest 48:457–460

    Article  PubMed  CAS  Google Scholar 

  9. Verhulp E, Van RB, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35

    Article  PubMed  CAS  Google Scholar 

  10. Yang L, Maric I, McCloskey EV, Eastell R (2008) Shape, structural properties and cortical stability along the femoral neck: a study using clinical QCT. J Clin Densitom 11:373–382

    Article  PubMed  Google Scholar 

  11. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328

    Article  PubMed  CAS  Google Scholar 

  12. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  13. Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ (2005) One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 353:555–565

    Article  PubMed  CAS  Google Scholar 

  14. Eastell R, Lang T, Boonen S, Cummings S, Delmas PD, Cauley JA, Horowitz Z, Kerzberg E, Bianchi G, Kendler D, Leung P, Man Z, Mesenbrink P, Eriksen EF, Black DM (2010) Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int 21:1277–1285

    Article  PubMed  CAS  Google Scholar 

  15. Genant HK, Lang T, Fuerst T, Pinette KV, Zhou C, Thiebaud D, ez-Perez A (2004) Treatment with raloxifene for 2 years increases vertebral bone mineral density as measured by volumetric quantitative computed tomography. Bone 35:1164–1168

    Article  PubMed  CAS  Google Scholar 

  16. Lewiecki EM, Keaveny TM, Kopperdahl DL, Genant HK, Engelke K, Fuerst T, Kivitz A, Davies RY, Fitzpatrick LA (2009) Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 94:171–180

    Article  PubMed  CAS  Google Scholar 

  17. McClung MR, Zanchetta JR, Hoiseth A, Kendler DL, Yuen CK, Brown JP, Stonkus S, Goemaere S, Recknor C, Woodson GC, Bolognese MA, Franek E, Brandi ML, Wang A, Libanati C (2012) Denosumab Densitometric changes assessed by quantitative computed tomography at the spine and hip in postmenopausal women with osteoporosis. J Clin Densitom 15(2):176–185

    Article  Google Scholar 

  18. Poole KE, Treece GM, Ridgway GR, Mayhew PM, Borggrefe J, Gee AH (2011) Targeted regeneration of bone in the osteoporotic human femur. PLoS One 6:e16190

    Article  PubMed  CAS  Google Scholar 

  19. Yang L, Prevrhal S, McCloskey EV, Eastell R (2008) A method to estimate femoral neck cortical thickness from clinical QCT scans. Calcif Tissue Int 82:S181–S182

    Google Scholar 

  20. Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11:1518–1525

    Article  PubMed  CAS  Google Scholar 

  21. Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30:1–8

    Article  PubMed  Google Scholar 

  22. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  23. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Article  PubMed  CAS  Google Scholar 

  24. Bell KL, Loveridge N, Power J, Rushton N, Reeve J (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int 10:248–257

    Article  PubMed  CAS  Google Scholar 

  25. Crabtree NJ, Kroger H, Martin A, Pols HA, Lorenc R, Nijs J, Stepan JJ, Falch JA, Miazgowski T, Grazio S, Raptou P, Adams J, Collings A, Khaw KT, Rushton N, Lunt M, Dixon AK, Reeve J (2002) Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int 13:48–54

    Article  PubMed  CAS  Google Scholar 

  26. Riggs BL, Melton IL III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  27. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904

    Article  PubMed  Google Scholar 

  28. Rivadeneira F, Zillikens MC, de Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1782–1790

    Article  Google Scholar 

  29. Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174

    Article  PubMed  CAS  Google Scholar 

  30. Lang T, LeBlanc A, Evans H, Lu Y, Genant HK, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  31. Graeff C, Timm W, Nickelsen TN, Farrerons J, Marin F, Barker C, Gluer CC (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22:1426–1433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our sponsors, the Medical Research Council and the National Institute for Health Research (NIHR). The HORIZON PFT was sponsored by Novartis Pharma AG, Basel, Switzerland. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Acknowledgements go to the editorial board of the Sheffield NIHR Bone Biomedical Research Unit for their help in preparing this manuscript.

Conflicts of interest

Dr. Eastell serves as a consultant, has received honoraria for speaking, and has received grant funding from Novartis, Amgen, Sanofi-Aventis, Lilly, Organon, Pfizer, and Procter & Gamble Pharmaceuticals. Dr. Black serves as a consultant for Nycomed and Zosano and has research contracts with Novartis and Roche. Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Sycheva, A.V., Black, D.M. et al. Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial. Osteoporos Int 24, 329–338 (2013). https://doi.org/10.1007/s00198-012-2200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2200-x

Keywords

Navigation