Skip to main content
Log in

Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Micro-finite element analysis applied to high-resolution (0.234-mm length scale) MRI reveals greater whole and cancellous bone stiffness, but not greater cortical bone stiffness, in the distal femur of female dancers compared to controls. Greater whole bone stiffness appears to be mediated by cancellous, rather than cortical bone adaptation.

Introduction

The purpose of this study was to compare bone mechanical competence (stiffness) in the distal femur of female dancers compared to healthy, relatively inactive female controls.

Methods

This study had institutional review board approval. We recruited nine female modern dancers (25.7 ± 5.8 years, 1.63 ± 0.06 m, 57.1 ± 4.6 kg) and ten relatively inactive, healthy female controls matched for age, height, and weight (32.1 ± 4.8 years, 1.6 ± 0.04 m, 55.8 ± 5.9 kg). We scanned the distal femur using a 7-T MRI scanner and a three-dimensional fast low-angle shot sequence (TR/TE = 31 ms/5.1 ms, 0.234 mm × 0.234 mm × 1 mm, 80 slices). We applied micro-finite element analysis to 10-mm-thick volumes of interest at the distal femoral diaphysis, metaphysis, and epiphysis to compute stiffness and cross-sectional area of whole, cortical, and cancellous bone, as well as cortical thickness. We applied two-tailed t-tests and ANCOVA to compare groups.

Results

Dancers demonstrated greater whole and cancellous bone stiffness and cross-sectional area at all locations (p < 0.05). Cortical bone stiffness, cross-sectional area, and thickness did not differ between groups (>0.08). At all locations, the percent of intact whole bone stiffness for cortical bone alone was lower in dancers (p < 0.05). Adjustment for cancellous bone cross-sectional area eliminated significant differences in whole bone stiffness between groups (p > 0.07), but adjustment for cortical bone cross-sectional area did not (p < 0.03).

Conclusions

Modern dancers have greater whole and cancellous bone stiffness in the distal femur compared to controls. Elevated whole bone stiffness in dancers may be mediated via cancellous, rather than cortical bone adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wolff J (1892) Das Gesetz der Transformation der Knochen. Verlag, Berlin

    Google Scholar 

  2. Amin S (2010) Mechanical factors and bone health: effects of weightlessness and neurologic injury. Curr Rheumatol Rep 12(3):170–176

    Article  PubMed  Google Scholar 

  3. Keyak JH et al (2009) Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44(3):449–453

    Article  PubMed  CAS  Google Scholar 

  4. Holick MF (1998) Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 22(5 Suppl):105S–111S

    Article  PubMed  CAS  Google Scholar 

  5. Modlesky CM et al (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19(1):48–55

    Article  PubMed  Google Scholar 

  6. McCarthy ID et al (2012) Changes in the structural and material properties of the tibia in patients with spinal cord injury. Spinal Cord 50:333–337

    Article  PubMed  CAS  Google Scholar 

  7. Fredericson M et al (2007) Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med 41(10):664–668, discussion 668

    Article  PubMed  Google Scholar 

  8. Ferry B et al (2011) Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29(3):342–351

    Article  PubMed  Google Scholar 

  9. Nikander R et al (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20(3):520–528

    Article  PubMed  Google Scholar 

  10. Courteix D et al (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8(2):152–158

    Article  PubMed  CAS  Google Scholar 

  11. Taaffe DR et al (1997) High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 12(2):255–260

    Article  PubMed  CAS  Google Scholar 

  12. Ward KA et al (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36(6):1012–1018

    Article  PubMed  CAS  Google Scholar 

  13. Chang G, Regatte RR, Schweitzer ME (2009) Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography. Osteoporos Int 20(5):779–785

    Article  PubMed  CAS  Google Scholar 

  14. Ireland A et al (2011) Side-to-side differences in bone strength in master jumpers and sprinters. J Musculoskelet Neuronal Interact 11(4):298–305

    PubMed  CAS  Google Scholar 

  15. Nikander R et al (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21(10):1687–1694

    Article  PubMed  CAS  Google Scholar 

  16. Heinonen A et al (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17(3):197–203

    Article  PubMed  CAS  Google Scholar 

  17. Meyer NL et al (2004) Bone mineral density of olympic-level female winter sport athletes. Med Sci Sports Exerc 36(9):1594–1601

    Article  PubMed  Google Scholar 

  18. Ducher G et al (2011) Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: a 12-month study in pre/peri- and postmenarcheal tennis players. J Bone Miner Res 26(6):1321–1329

    Article  PubMed  Google Scholar 

  19. Sanchis-Moysi J et al (2010) Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency. Eur J Appl Physiol 110(1):83–90

    Article  PubMed  Google Scholar 

  20. Kontulainen S et al (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18(2):352–359

    Article  PubMed  Google Scholar 

  21. Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261

    Article  PubMed  CAS  Google Scholar 

  22. Patsch JM et al (2011) Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci 1240:77–87

    Article  PubMed  Google Scholar 

  23. Liu XS et al (2010) Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25(9):2039–2050

    Article  PubMed  Google Scholar 

  24. Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13(5):323–334

    Article  PubMed  Google Scholar 

  25. Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25(2):390–409

    Article  PubMed  Google Scholar 

  26. Melton LJ 3rd et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25(9):1922–1930

    Article  PubMed  Google Scholar 

  27. Macdonald HM et al (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26(1):50–62

    Article  PubMed  Google Scholar 

  28. Stein EM et al (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res 25(12):2572–2581

    Article  PubMed  Google Scholar 

  29. Wehrli FW et al (2010) Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res 25(6):1406–1414

    Article  PubMed  CAS  Google Scholar 

  30. Burghardt AJ et al (2010) A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res 25(12):2558–2571

    Article  PubMed  Google Scholar 

  31. van Rietbergen B et al (1998) Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care 6(5–6):413–420

    PubMed  Google Scholar 

  32. Newitt DC et al (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13(1):6–17

    Article  PubMed  CAS  Google Scholar 

  33. Rajapakse CS et al (2009) Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res 27(10):1263–1271

    Article  PubMed  Google Scholar 

  34. Rajapakse CS et al (2010) Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47(3):556–563

    Article  PubMed  Google Scholar 

  35. Weiss DS, Shah S, Burchette RJ (2008) A profile of the demographics and training characteristics of professional modern dancers. J Dance Med Sci 12(2):41–46

    PubMed  Google Scholar 

  36. Chang G et al (2012) In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J Bone Miner Metab 30:243–251

    Article  PubMed  Google Scholar 

  37. Kim N et al (2012) Evaluation of MRI resolution affecting trabecular bone parameters: Determination of acceptable resolution. Magn Reson Med 67:218–225

    Article  PubMed  Google Scholar 

  38. Vasilic B, Wehrli FW (2005) A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI. IEEE Trans Med Imaging 24(12):1574–1585

    Article  PubMed  Google Scholar 

  39. Jones AC, Wilcox RK (2008) Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 30(10):1287–1304

    Article  PubMed  Google Scholar 

  40. Jones AC, Wilcox RK (2007) Assessment of factors influencing finite element vertebral model predictions. J Biomech Eng 129(6):898–903

    Article  PubMed  Google Scholar 

  41. Crawford RP, Rosenberg WS, Keaveny TM (2003) Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng 125(4):434–438

    Article  PubMed  Google Scholar 

  42. Guo XE, Goldstein XA (1997) Is trabecular bone tissue different from cortical bone tissue? Forma 12:185–196

    Google Scholar 

  43. Bhagat YA et al (2011) Performance of muMRI-Based virtual bone biopsy for structural and mechanical analysis at the distal tibia at 7T field strength. J Magn Reson Imaging 33(2):372–381

    Article  PubMed  Google Scholar 

  44. Wald MJ et al (2010) Structural and mechanical parameters of trabecular bone estimated from in vivo high-resolution magnetic resonance images at 3 tesla field strength. J Magn Reson Imaging 31(5):1157–1168

    Article  PubMed  Google Scholar 

  45. Rajapakse CS et al (2012) Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262:921–931

    Article  Google Scholar 

  46. Eswaran SK et al (2007) The micro-mechanics of cortical shell removal in the human vertebral body. Comp Meth Appl Mech Eng 196:3025–3032

    Article  Google Scholar 

  47. Krug R et al (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16(11):1307–1314

    Article  PubMed  Google Scholar 

  48. Wehrli FW et al (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206(2):347–357

    PubMed  CAS  Google Scholar 

  49. Majumdar S et al (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10(3):231–239

    Article  PubMed  CAS  Google Scholar 

  50. Modlesky CM, Majumdar S, Dudley GA (2008) Trabecular bone microarchitecture in female collegiate gymnasts. Osteoporos Int 19(7):1011–1018

    Article  PubMed  CAS  Google Scholar 

  51. Chang G et al (2008) Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI. J Magn Reson Imaging 27(5):1089–1095

    Article  PubMed  Google Scholar 

  52. Diez-Perez A et al (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25(8):1877–1885

    Article  PubMed  Google Scholar 

  53. Burghardt AJ et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055

    Article  PubMed  CAS  Google Scholar 

  54. Haapasalo H et al (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27(3):351–357

    Article  PubMed  CAS  Google Scholar 

Download references

Grant support

NIAMS/NIH K23-AR059748 (PI Chang); NIAMS/NIH K25-AR060283 (PI Rajapakse); NIAMS/NIH RO1-AR053133 (PI Regatte); NIAMS/NIH RO1-AR056260 (PI Regatte); NIAMS/NIH RO1-AR060238 (PI Regatte)

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, G., Rajapakse, C.S., Diamond, M. et al. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers. Osteoporos Int 24, 1407–1417 (2013). https://doi.org/10.1007/s00198-012-2105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2105-8

Keywords

Navigation