Skip to main content
Log in

Exploring the Molecular Aetiology of Preeclampsia by Massive Parallel Sequencing of DNA

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This manuscript aims to review (for the first time) studies describing NGS sequencing of preeclampsia (PE) women’s DNA.

Recent Findings

Describing markers for the early detection of PE is an essential task because, although associated molecular dysfunction begins early on during pregnancy, the disease’s clinical signs usually appear late in pregnancy. Although several biochemical biomarkers have been proposed, their use in clinical environments is still limited, thereby encouraging research into PE’s genetic origin. Hundreds of genes involved in numerous implantation- and placentation-related biological processes may be coherent candidates for PE aetiology. Next-generation sequencing (NGS) offers new technical possibilities for PE studying, as it enables large genomic regions to be analysed at affordable cost. This technique has facilitated the description of genes contributing to the molecular origin of a significant amount of monogenic and complex diseases. Regarding PE, NGS of DNA has been used in familial and isolated cases, thereby enabling new genes potentially related to the phenotype to be proposed.

Summary

For a better understanding of NGS, technical aspects, applications and limitations are presented initially. Thereafter, NGS studies of DNA in familial and non-familial cases are described, including pitfalls and positive findings. The information given here should enable scientists and clinicians to analyse and design new studies permitting the identification of novel clinically useful molecular PE markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American College of O, Gynecologists, Task Force on Hypertension in P. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Article  Google Scholar 

  2. Shah S, Gupta A. Hypertensive disorders of pregnancy. Cardiol Clin. 2019;37(3):345–54. https://doi.org/10.1016/j.ccl.2019.04.008.

    Article  PubMed  Google Scholar 

  3. Antza C, Cifkova R, Kotsis V. Hypertensive complications of pregnancy: a clinical overview. Metab Clin Exp. 2018;86:102–11. https://doi.org/10.1016/j.metabol.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  4. • Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–80. https://doi.org/10.1038/nrneph.2014.102This is a comprehensive review of preeclapmsia pathophysiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Martinez-Fierro ML, Hernandez-Delgadillo GP, Flores-Morales V, Cardenas-Vargas E, Mercado-Reyes M, Rodriguez-Sanchez IP, et al. Current model systems for the study of preeclampsia. Exp Biol Med. 2018;243(6):576–85. https://doi.org/10.1177/1535370218755690This manuscript reviews several key models for studying PE pathophysilogy.

    Article  CAS  Google Scholar 

  6. Marshall SA, Hannan NJ, Jelinic M, Nguyen TPH, Girling JE, Parry LJ. Animal models of preeclampsia: translational failings and why. Am J Physiol Regul Integr Comp Physiol. 2018;314(4):R499–508. https://doi.org/10.1152/ajpregu.00355.2017.

    Article  CAS  PubMed  Google Scholar 

  7. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. Bmj. 2019;366:l2381. https://doi.org/10.1136/bmj.l2381.

    Article  PubMed  Google Scholar 

  8. Bakhti A, Vaiman D. Prevention of gravidic endothelial hypertension by aspirin treatment administered from the 8th week of gestation. Hypertens Res. 2011;34(10):1116–20. https://doi.org/10.1038/hr.2011.111.

    Article  CAS  PubMed  Google Scholar 

  9. Roberge S, Bujold E. Uterine artery Doppler and low-dose aspirin to predict and prevent preeclampsia. BJOG. 2010;117(11):1430–1; author reply 1. https://doi.org/10.1111/j.1471-0528.2010.02672.x.

    Article  CAS  PubMed  Google Scholar 

  10. Rolnik DL, O’Gorman N, Roberge S, Bujold E, Hyett J, Uzan S, et al. Early screening and prevention of preterm pre-eclampsia with aspirin: time for clinical implementation. Ultrasound Obstet Gynecol. 2017;50(5):551–6. https://doi.org/10.1002/uog.18899.

    Article  CAS  PubMed  Google Scholar 

  11. Acharya A, Brima W, Burugu S, Rege T. Prediction of preeclampsia-bench to bedside. Curr Hypertens Rep. 2014;16(11):491. https://doi.org/10.1007/s11906-014-0491-3.

    Article  CAS  PubMed  Google Scholar 

  12. Jadli A, Sharma N, Damania K, Satoskar P, Bansal V, Ghosh K, et al. Promising prognostic markers of preeclampsia: new avenues in waiting. Thromb Res. 2015;136(2):189–95. https://doi.org/10.1016/j.thromres.2015.05.011.

    Article  CAS  PubMed  Google Scholar 

  13. Inversetti A, Smid M, Candiani M, Ferrari M, Galbiati S. Predictive biomarkers of pre-eclampsia and effectiveness of preventative interventions for the disease. Expert Opin Biol Ther. 2014;14(8):1161–73. https://doi.org/10.1517/14712598.2014.912271.

    Article  CAS  PubMed  Google Scholar 

  14. • Jebbink J, Wolters A, Fernando F, Afink G, van der Post J, Ris-Stalpers C. Molecular genetics of preeclampsia and HELLP syndrome - a review. Biochim Biophys Acta. 2012;1822(12):1960–9. https://doi.org/10.1016/j.bbadis.2012.08.004This manuscript revises full aspects of preeclampsia and HELLP syndrome genetics.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson MP, Brennecke SP, East CE, Goring HH, Kent JW Jr, Dyer TD, et al. Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One. 2012;7(3):e33666. https://doi.org/10.1371/journal.pone.0033666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao L, Bracken MB, DeWan AT. Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort. Ann Hum Genet. 2013;77(4):277–87. https://doi.org/10.1111/ahg.12021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thakoordeen S, Moodley J, Naicker T. Candidate gene, genome-wide association and bioinformatic studies in pre-eclampsia: a review. Curr Hypertens Rep. 2018;20(10):91. https://doi.org/10.1007/s11906-018-0891-x.

    Article  CAS  PubMed  Google Scholar 

  18. •• Apicella C, Ruano CSM, Mehats C, Miralles F, Vaiman D. The role of epigenetics in placental development and the etiology of preeclampsia. Int J Mol Sci. 2019;20(11). https://doi.org/10.3390/ijms20112837An excellent review on preeclampsia epigenetics.

  19. Vaiman D, Miralles F. Targeting STOX1 in the therapy of preeclampsia. Expert Opin Ther Targets. 2016;20(12):1433–43. https://doi.org/10.1080/14728222.2016.1253682.

    Article  CAS  PubMed  Google Scholar 

  20. •• van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CB, et al. The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet. 2010;19(13):2658–67. https://doi.org/10.1093/hmg/ddq152This paper links for the first time STOX1 to preeclampsia aetiology.

    Article  CAS  PubMed  Google Scholar 

  21. Rigourd V, Chauvet C, Chelbi ST, Rebourcet R, Mondon F, Letourneur F, et al. STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas. PLoS One. 2008;3(12):e3905. https://doi.org/10.1371/journal.pone.0003905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doridot L, Chatre L, Ducat A, Vilotte JL, Lombes A, Mehats C, et al. Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxid Redox Signal. 2014;21(6):819–34. https://doi.org/10.1089/ars.2013.5661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Ducat A, Doridot L, Calicchio R, Mehats C, Vilotte JL, Castille J, et al. Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep. 2016;6:19196. https://doi.org/10.1038/srep19196This paper links STOX1 dysfunction to cardiac hypertrophy in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collinot H, Marchiol C, Lagoutte I, Lager F, Siauve N, Autret G, et al. Preeclampsia induced by STOX1 overexpression in mice induces intrauterine growth restriction, abnormal ultrasonography and BOLD MRI signatures. J Hypertens. 2018;36(6):1399–406. https://doi.org/10.1097/HJH.0000000000001695.

    Article  CAS  PubMed  Google Scholar 

  25. •• Miralles F, Collinot H, Boumerdassi Y, Ducat A, Duche A, Renault G, et al. Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia. Sci Rep. 2019;9(1):11918. https://doi.org/10.1038/s41598-019-48427-3This paper links STOX1 dysfunction to long term cardiac abnormalities in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quintero-Ronderos P, Laissue P. The multisystemic functions of FOXD1 in development and disease. J Mol Med. 2018;96(8):725–39. https://doi.org/10.1007/s00109-018-1665-2.

    Article  CAS  PubMed  Google Scholar 

  27. Quintero-Ronderos P, Jimenez KM, Esteban-Perez C, Ojeda DA, Bello S, Fonseca DJ, et al. FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med. 2019;25(1):37. https://doi.org/10.1186/s10020-019-0104-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Laissue P, Lakhal B, Vatin M, Batista F, Burgio G, Mercier E, et al. Association of FOXD1 variants with adverse pregnancy outcomes in mice and humans. Open Biol. 2016;6(10). https://doi.org/10.1098/rsob.160109This paper describes FOXD1 as a major gene related to embryo impantation in mice and recurrent spontaneous abortion in humans.

  29. Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A. 2004;130A(4):365–71. https://doi.org/10.1002/ajmg.a.30257.

    Article  PubMed  Google Scholar 

  30. Monk D. Genomic imprinting in the human placenta. Am J Obstet Gynecol. 2015;213(4 Suppl):S152–62. https://doi.org/10.1016/j.ajog.2015.06.032.

    Article  PubMed  Google Scholar 

  31. Cassidy FC, Charalambous M. Genomic imprinting, growth and maternal-fetal interactions. J Exp Biol. 2018;221(Pt Suppl 1). https://doi.org/10.1242/jeb.164517.

  32. •• Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51. https://doi.org/10.1038/nrg.2016.49An excellent review on NGS technology.

    Article  CAS  PubMed  Google Scholar 

  33. Jamuar SS, Tan EC. Clinical application of next-generation sequencing for Mendelian diseases. Hum Genomics. 2015;9:10. https://doi.org/10.1186/s40246-015-0031-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem. 2018;25(3):404–32. https://doi.org/10.2174/0929867324666170718101946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X, Zhang Y, Zhao L, Wang L, Wu Z, Mei Q, et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Hum Mol Genet. 2014;23(22):6008–21. https://doi.org/10.1093/hmg/ddu330.

    Article  CAS  PubMed  Google Scholar 

  36. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noe M, Horlings HM, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376(19):1835–48. https://doi.org/10.1056/NEJMoa1614814.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol. 2018;460:170–80. https://doi.org/10.1016/j.mce.2017.07.021.

    Article  CAS  PubMed  Google Scholar 

  38. Quintero-Ronderos P, Laissue P. Genetic variants contributing to early recurrent pregnancy loss etiology identified by sequencing approaches. Reprod Sci. 2019;1933719119831769. https://doi.org/10.1177/1933719119831769.

  39. Jiao J, Sagnelli M, Shi B, Fang Y, Shen Z, Tang T, et al. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord. 2019;19(1):30. https://doi.org/10.1186/s12902-019-0356-5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCarthy JJ, McLeod HL, Ginsburg GS. Genomic medicine: a decade of successes, challenges, and opportunities. Sci Transl Med. 2013;5(189):189sr4. https://doi.org/10.1126/scitranslmed.3005785.

    Article  CAS  PubMed  Google Scholar 

  41. O’Donnell-Luria AH, Miller DT. A clinician’s perspective on clinical exome sequencing. Hum Genet. 2016;135(6):643–54. https://doi.org/10.1007/s00439-016-1662-x.

    Article  CAS  PubMed  Google Scholar 

  42. Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A. 2006;103(52):19635–40. https://doi.org/10.1073/pnas.0609513103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo J, Xu N, Li Z, Zhang S, Wu J, Kim DH, et al. Four-color DNA sequencing with 3’-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci U S A. 2008;105(27):9145–50. https://doi.org/10.1073/pnas.0804023105.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364. https://doi.org/10.1155/2012/251364.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341. https://doi.org/10.1186/1471-2164-13-341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55. https://doi.org/10.1038/nrg3031.

    Article  CAS  PubMed  Google Scholar 

  47. •• Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019;177(1):70–84. https://doi.org/10.1016/j.cell.2019.02.032This paper describes the current state of technologies for genetic variant discovery, genotyping, and functional interpretation and discuss the prospects for future advances.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2014;15(2):256–78. https://doi.org/10.1093/bib/bbs086.

    Article  PubMed  Google Scholar 

  49. Dai M, Thompson RC, Maher C, Contreras-Galindo R, Kaplan MH, Markovitz DM, et al. NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics. 2010;11(Suppl 4):S7. https://doi.org/10.1186/1471-2164-11-S4-S7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guo Y, Ye F, Sheng Q, Clark T, Samuels DC. Three-stage quality control strategies for DNA re-sequencing data. Brief Bioinform. 2014;15(6):879–89. https://doi.org/10.1093/bib/bbt069.

    Article  CAS  PubMed  Google Scholar 

  51. Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput Struct Biotechnol J. 2018;16:15–24. https://doi.org/10.1016/j.csbj.2018.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121–32. https://doi.org/10.1038/nrg3642.

    Article  CAS  PubMed  Google Scholar 

  53. Bertier G, Hetu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users’ views. BMC Med Genet. 2016;9(1):52. https://doi.org/10.1186/s12920-016-0213-6.

    Article  Google Scholar 

  54. Goldfeder RL, Priest JR, Zook JM, Grove ME, Waggott D, Wheeler MT, et al. Medical implications of technical accuracy in genome sequencing. Genome Med. 2016;8(1):24. https://doi.org/10.1186/s13073-016-0269-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang YS, Huang HD, Yeh KT, Chang JG. Evaluation of whole exome sequencing by targeted gene sequencing and Sanger sequencing. Clin Chim Acta. 2017;471:222–32. https://doi.org/10.1016/j.cca.2017.06.015.

    Article  CAS  PubMed  Google Scholar 

  56. Kong SW, Lee IH, Liu X, Hirschhorn JN, Mandl KD. Measuring coverage and accuracy of whole-exome sequencing in clinical context. Genet Med. 2018;20(12):1617–26. https://doi.org/10.1038/gim.2018.51.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Patino LC, Beau I, Carlosama C, Buitrago JC, Gonzalez R, Suarez CF, et al. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Hum Reprod. 2017;32(7):1512–20. https://doi.org/10.1093/humrep/dex089.

    Article  CAS  PubMed  Google Scholar 

  58. Quintero-Ronderos P, Mercier E, Fukuda M, Gonzalez R, Suarez CF, Patarroyo MA, et al. Novel genes and mutations in patients affected by recurrent pregnancy loss. PLoS One. 2017;12(10):e0186149. https://doi.org/10.1371/journal.pone.0186149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carlosama C, Patino LC, Beau I, Morel A, Delemer B, Young J, et al. A novel mutation in KHDRBS1 in a patient affected by primary ovarian insufficiency. Clin Endocrinol. 2018. https://doi.org/10.1111/cen.13749.

  60. Patino LC, Beau I, Morel A, Delemer B, Young J, Binart N, et al. Functional evidence implicating NOTCH2 missense mutations in primary ovarian insufficiency etiology. Hum Mutat. 2019;40(1):25–30. https://doi.org/10.1002/humu.23667.

    Article  CAS  PubMed  Google Scholar 

  61. Delcour C, Amazit L, Patino LC, Magnin F, Fagart J, Delemer B, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–8. https://doi.org/10.1038/s41436-018-0287-y.

    Article  CAS  PubMed  Google Scholar 

  62. Kamps R, Brandao RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. International journal of molecular sciences. 2017;18(2). https://doi.org/10.3390/ijms18020308.

  63. Fujiki R, Ikeda M, Yoshida A, Akiko M, Yao Y, Nishimura M, et al. Assessing the accuracy of variant detection in cost-effective gene panel testing by next-generation sequencing. J Mol Diagn: JMD. 2018;20(5):572–82. https://doi.org/10.1016/j.jmoldx.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  64. Marinov GK. On the design and prospects of direct RNA sequencing. Brief Funct Genomics. 2017;16(6):326–35. https://doi.org/10.1093/bfgp/elw043.

    Article  CAS  PubMed  Google Scholar 

  65. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56. https://doi.org/10.1038/s41576-019-0150-2.

    Article  CAS  PubMed  Google Scholar 

  66. • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. https://doi.org/10.1186/s13059-016-0881-8A comprehenesive manuscript on RNA-seq data analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley interdisciplinary reviews RNA. 2017;8(1). https://doi.org/10.1002/wrna.1364.

  68. Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One. 2017;12(12):e0190152. https://doi.org/10.1371/journal.pone.0190152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017;541(7637):331–8. https://doi.org/10.1038/nature21350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haque A, Engel J, Teichmann SA, Lonnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75. https://doi.org/10.1186/s13073-017-0467-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. bioRxiv. 2019;738658.

  72. Pavlicev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 2017;27(3):349–61. https://doi.org/10.1101/gr.207597.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA, Garzia A, et al. A single-cell survey of the human first-trimester placenta and decidua. Sci Adv. 2018;4(10):eaau4788. https://doi.org/10.1126/sciadv.aau4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. •• Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53. https://doi.org/10.1038/s41586-018-0698-6A key paper describing single cell analysis of the maternal-fetal interface.

    Article  CAS  PubMed  Google Scholar 

  75. • Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 2018;28(8):819–32. https://doi.org/10.1038/s41422-018-0066-yA paper describing single cell transcriptome analysis of the human placenta.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Emmery J, Hachmon R, Pyo CW, Nelson WC, Geraghty DE, Andersen AM, et al. Maternal and fetal human leukocyte antigen class Ia and II alleles in severe preeclampsia and eclampsia. Genes Immun. 2016;17(4):251–60. https://doi.org/10.1038/gene.2016.20.

    Article  CAS  PubMed  Google Scholar 

  77. Ding D, Scott NM, Thompson EE, Chaiworapongsa T, Torres R, Billstrand C, et al. Increased protein-coding mutations in the mitochondrial genome of African American women with preeclampsia. Reprod Sci. 2012;19(12):1343–51. https://doi.org/10.1177/1933719112450337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. • Kaartokallio T, Wang J, Heinonen S, Kajantie E, Kivinen K, Pouta A, et al. Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk variants. Sci Rep. 2016;6:29085. https://doi.org/10.1038/srep29085A NGS approach on pooled DNA samples for identifying variants having a potential role in preeclampsia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gammill HS, Chettier R, Brewer A, Roberts JM, Shree R, Tsigas E, et al. Cardiomyopathy and preeclampsia. Circulation. 2018;138(21):2359–66. https://doi.org/10.1161/CIRCULATIONAHA.117.031527.

    Article  PubMed  Google Scholar 

  80. • Hansen AT, Bernth Jensen JM, Hvas AM, Christiansen M. The genetic component of preeclampsia: a whole-exome sequencing study. PloS One. 2018;13(5):e0197217. https://doi.org/10.1371/journal.pone.0197217A paper describing exome sequencing in preeclampsia patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiménez KM, Parada-Niño L, González-Rodríguez, MA, Flórez S, Bolívar-Salazar D, Becerra-Bayona S, Aguirre-Garcia, AD, Murcia T, Carlosama C, Ardila J, Vaiman D, Serrano N, Laissue P. Detecting new potential genetic biomarkers for HELLP syndrome using whole-exome sequencing. Pregnancy. Hyperten 2020. Under review

  82. • Melton PE, Johnson MP, Gokhale-Agashe D, Rea AJ, Ariff A, Cadby G, et al. Whole-exome sequencing in multiplex preeclampsia families identifies novel candidate susceptibility genes. J Hypertens. 2019;37(5):997–1011. https://doi.org/10.1097/HJH.0000000000002023A paper describing exome sequencing in preeclampsia families.

    Article  CAS  PubMed  Google Scholar 

  83. Soellner L, Kopp KM, Mutze S, Meyer R, Begemann M, Rudnik S, et al. NLRP genes and their role in preeclampsia and multi-locus imprinting disorders. J Perinat Med. 2018;46(2):169–73. https://doi.org/10.1515/jpm-2016-0405.

    Article  CAS  PubMed  Google Scholar 

  84. Glotov AS, Kazakov SV, Vashukova ES, Pakin VS, Danilova MM, Nasykhova YA, et al. Targeted sequencing analysis of ACVR2A gene identifies novel risk variants associated with preeclampsia. J Matern Fetal Neonatal Med. 2019;32(17):2790–6. https://doi.org/10.1080/14767058.2018.1449204.

    Article  CAS  PubMed  Google Scholar 

  85. Moses EK, Lade JA, Guo G, Wilton AN, Grehan M, Freed K, et al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet. 2000;67(6):1581–5. https://doi.org/10.1086/316888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moses EK, Fitzpatrick E, Freed KA, Dyer TD, Forrest S, Elliott K, et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod. 2006;12(8):505–12. https://doi.org/10.1093/molehr/gal056.

    Article  CAS  PubMed  Google Scholar 

  87. Yong HEJ, Murthi P, Kalionis B, Keogh RJ, Brennecke SP. Decidual ACVR2A regulates extravillous trophoblast functions of adhesion, proliferation, migration and invasion in vitro. Pregnancy Hypertens. 2018;12:189–93. https://doi.org/10.1016/j.preghy.2017.11.002.

    Article  PubMed  Google Scholar 

  88. Dekker G, Robillard PY. Pre-eclampsia: is the immune maladaptation hypothesis still standing? An epidemiological update. J Reprod Immunol. 2007;76(1–2):8–16. https://doi.org/10.1016/j.jri.2007.03.015.

    Article  CAS  PubMed  Google Scholar 

  89. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63(6):534–43. https://doi.org/10.1111/j.1600-0897.2010.00831.x.

    Article  CAS  PubMed  Google Scholar 

  90. Saftlas AF, Beydoun H, Triche E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: a systematic review. Obstet Gynecol. 2005;106(1):162–72. https://doi.org/10.1097/01.AOG.0000167389.97019.37.

    Article  PubMed  Google Scholar 

  91. Djurisic S, Hviid TV. HLA class Ib molecules and immune cells in pregnancy and preeclampsia. Front Immunol. 2014;5:652. https://doi.org/10.3389/fimmu.2014.00652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anand S, Mangano E, Barizzone N, Bordoni R, Sorosina M, Clarelli F, et al. Next generation sequencing of pooled samples: guideline for variants’ filtering. Sci Rep. 2016;6:33735. https://doi.org/10.1038/srep33735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang T, Lin C-Y, Zhang Y, Wen R, Ye K. Design and statistical analysis of pooled next generation sequencing for rare variants. J Probab Stat. 2012;2012.

  94. Wang J, Skoog T, Einarsdottir E, Kaartokallio T, Laivuori H, Grauers A, et al. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples. Sci Rep. 2016;6:33256. https://doi.org/10.1038/srep33256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. https://doi.org/10.1038/nature08494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017;18(1):77. https://doi.org/10.1186/s13059-017-1212-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study and Laissue’s Lab were supported by El Rosario University (grant: CS/ABN062/GENIUROS 018-019). Colciencias also supported the present work (Grant: 831-2017, 122277758201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Laissue.

Ethics declarations

Conflict of Interest

Paul Laissue declares that his present salary is paid by BIOPAS Laboratories for working in projects different to that described in the present manuscript. Daniel Vaiman declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laissue, P., Vaiman, D. Exploring the Molecular Aetiology of Preeclampsia by Massive Parallel Sequencing of DNA. Curr Hypertens Rep 22, 31 (2020). https://doi.org/10.1007/s11906-020-01039-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01039-z

Keywords

Navigation