Skip to main content
Log in

Exploring the Mechanistic Link Between Obesity and Heart Failure

  • Review
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Among subtypes of cardiovascular disease, obesity has a potent and unique association with heart failure (HF) that is unexplained by traditional cardiovascular risk mediators. The concomitant rise in the prevalence of obesity and HF necessitates better understanding of their relationship to develop effective prevention and treatment strategies. The purpose of this review is to provide mechanistic insight regarding the link between obesity and HF by elucidating the direct and indirect pathways linking the two conditions.

Recent Findings

Several direct pathophysiologic mechanisms contribute to HF risk in individuals with excess weight, including hemodynamic alterations, neurohormonal activation, hormonal effects of dysfunctional adipose tissue, ectopic fat deposition with resulting lipotoxicity and microvascular dysfunction. Obesity further predisposes to HF indirectly through causal associations with hypertension, dyslipidemia, and most importantly, diabetes via insulin resistance. Low levels of physical activity and fitness further influence HF risk in the context of obesity. These various processes lead to myocardial injury and cardiac remodeling that are reflected by abnormalities in cardiac biomarkers and cardiac function on myocardial imaging.

Summary

Understanding and addressing obesity-associated HF is a pressing clinical and public health challenge which can be informed by a deeper understanding of the complex pathways linking these two conditions together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

American College of Cardiology

ACEi:

Angiotensin converting enzyme inhibitor

AHA:

American Heart Association

ARB:

Angiotensin receptor blocker

ARIC:

The Atherosclerosis Risk in Communities (study)

ARNi:

Angiotensin receptor-neprilysin inhibitor

BMI:

Body mass index

BNP:

Brain natriuretic peptide

CHF:

Congestive heart failure

CV:

Cardiovascular

CVD:

Cardiovascular disease

EF:

Ejection fraction

GIP:

Glucose-dependent insulinotropic polypeptide

hs-cTnT:

High-sensitive cardiac troponin T

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

LVEDV:

Left ventricular end-diastolic volume

MESA:

The Multi-Ethnic Study of Atherosclerosis (study)

NT-proBNP:

N-terminal pro-brain natriuretic peptide

PA:

Physical activity

RAAS:

Renin-angiotensin-aldosterone system

RV:

Right ventricle

SAT:

Subcutaneous adipose tissue

SD:

Standard deviation

SGLT2i:

Sodium-glucose cotransporter-2 inhibitors

VAT:

Visceral adipose tissue

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no 360. Hyattsville: National Center for Health Statistics; 2020

  2. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med. 2019;381(25):2440–50.

    Article  PubMed  Google Scholar 

  3. • Ndumele CE, Matsushita K, Lazo M, Bello N, Blumenthal RS, Gerstenblith G, et al. Obesity and subtypes of incident cardiovascular disease. J Am Heart Assoc. 2016;5(8):e003921. This study demonstrates that while traditional CVD risk factors account for the associations of obesity with incident CHD and stroke, greater degrees of obesity have an independent, dose-response relationship with future HF risk.

  4. Dunlay SM, Roger VL. Understanding the epidemic of heart failure: past, present, and future. Curr Heart Fail Rep. 2014;11(4):404–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fang M, Wang D, Coresh J, Selvin E. Trends in diabetes treatment and control in U.S. adults, 1999-2018. N Engl J Med. 2021;384(23):2219–28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor CJ, Ordonez-Mena JM, Roalfe AK, Lay-Flurrie S, Jones NR, Marshall T, et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. BMJ. 2019;364:l223.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018;3(4):280–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    Article  PubMed  Google Scholar 

  10. Reis JP, Allen N, Gunderson EP, Lee JM, Lewis CE, Loria CM, et al. Excess body mass index- and waist circumference-years and incident cardiovascular disease: the CARDIA study. Obesity (Silver Spring). 2015;23(4):879–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reis JP, Allen N, Gibbs BB, Gidding SS, Lee JM, Lewis CE, et al. Association of the degree of adiposity and duration of obesity with measures of cardiac structure and function: the CARDIA study. Obesity (Silver Spring). 2014;22(11):2434–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alpert MA, Lambert CR, Panayiotou H, Terry BE, Cohen MV, Massey CV, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76(16):1194–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ndumele CE, Cobb L, Lazo M, Bello NA, Shah A, Nambi V, et al. Weight history and subclinical myocardial damage. Clin Chem. 2018;64(1):201–9.

    Article  CAS  PubMed  Google Scholar 

  14. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34(5):791–9.

    Article  CAS  Google Scholar 

  15. Nicklas BJ, Cesari M, Penninx BW, Kritchevsky SB, Ding J, Newman A, et al. Abdominal obesity is an independent risk factor for chronic heart failure in older people. J Am Geriatr Soc. 2006;54(3):413–20.

    Article  PubMed  Google Scholar 

  16. Borne Y, Hedblad B, Essen B, Engstrom G. Anthropometric measures in relation to risk of heart failure hospitalization: a Swedish population-based cohort study. Eur J Public Health. 2014;24(2):215–20.

    Article  PubMed  Google Scholar 

  17. Leopoldo AS, Sugizaki MM, Lima-Leopoldo AP, do Nascimento AF, Luvizotto Rde A, de Campos DH, et al. Cardiac remodeling in a rat model of diet-induced obesity. Can J Cardiol. 2010;26(8):423–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Majane OH, Vengethasamy L, du Toit EF, Makaula S, Woodiwiss AJ, Norton GR. Dietary-induced obesity hastens the progression from concentric cardiac hypertrophy to pump dysfunction in spontaneously hypertensive rats. Hypertension. 2009;54(6):1376–83.

    Article  CAS  PubMed  Google Scholar 

  19. Alex L, Russo I, Holoborodko V, Frangogiannis NG. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2018;315(4):H934–H49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowen TS, Brauer D, Rolim NPL, Baekkerud FH, Kricke A, Ormbostad Berre AM, et al. Exercise training reveals inflexibility of the diaphragm in an animal model of patients with obesity-driven heart failure with a preserved ejection fraction. J Am Heart Assoc. 2017;6(10):e006416.

  21. Martinez-Martinez E, Lopez-Andres N, Jurado-Lopez R, Rousseau E, Bartolome MV, Fernandez-Celis A, et al. Galectin-3 participates in cardiovascular remodeling associated with obesity. hypertension. 2015;66(5):961–9.

    Article  CAS  PubMed  Google Scholar 

  22. Aurigemma GP, de Simone G, Fitzgibbons TP. Cardiac remodeling in obesity. Circ Cardiovasc Imaging. 2013;6(1):142–52.

    Article  PubMed  Google Scholar 

  23. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6(5):800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602.

    Article  PubMed  Google Scholar 

  25. Owan TE, Redfield MM. Epidemiology of diastolic heart failure. Prog Cardiovasc Dis. 2005;47(5):320–32.

    Article  PubMed  Google Scholar 

  26. Packer M, Lam CSP, Lund LH, Redfield MM. Interdependence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy. Circulation. 2020;141(1):4–6.

    Article  PubMed  Google Scholar 

  27. Ergatoudes C, Schaufelberger M, Andersson B, Pivodic A, Dahlstrom U, Fu M. Non-cardiac comorbidities and mortality in patients with heart failure with reduced vs. preserved ejection fraction: a study using the Swedish Heart Failure Registry. Clin Res Cardiol. 2019;108(9):1025–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Lima JAC, Post WS, Szklo M. Associations of time-varying obesity and metabolic syndrome with risk of incident heart failure and its subtypes: findings from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol. 2021;338:127–35.

    Article  PubMed  Google Scholar 

  29. Cohen LP, Vittinghoff E, Pletcher MJ, Allen NB, Shah SJ, Wilkins JT, et al. Association of midlife cardiovascular risk factors with the risk of heart failure subtypes later in life. J Card Fail. 2021;27(4):435–44.

    Article  PubMed  Google Scholar 

  30. Pandey A, LaMonte M, Klein L, Ayers C, Psaty BM, Eaton CB, et al. Relationship between physical activity, body mass index, and risk of heart failure. Journal of the American College of Cardiology. 2017;69(9):1129–42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, et al. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6(2):279–86.

    Article  PubMed  Google Scholar 

  32. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction. Circulation. Heart Fail. 2011;4(3):324–31.

    Article  Google Scholar 

  33. Khalid U, Wruck LM, Quibrera PM, Bozkurt B, Nambi V, Virani SS, et al. BNP and obesity in acute decompensated heart failure with preserved vs. reduced ejection fraction: the atherosclerosis risk in communities surveillance study. Int J Cardiol. 2017;233:61–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Rao VN, Zhao D, Allison MA, Guallar E, Sharma K, Criqui MH, et al. Adiposity and incident heart failure and its subtypes: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Heart Fail. 2018;6(12):999–1007. This study demonstrates the strong association between greater degrees of visceral fat and future HF risk, particularly the HFpEF phenotype. Conversely, a greater degree of subcutaneous fat is not independently associated with incident HF.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The Association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Patel KV, Bahnson JL, Gaussoin SA, Johnson KC, Pi-Sunyer X, White U, et al. Association of baseline and longitudinal changes in body composition measures with risk of heart failure and myocardial infarction in type 2 diabetes: findings from the Look AHEAD Trial. Circulation. 2020;142(25):2420–30. This secondary analysis of the LOOK Ahead trial demonstrates that lifestyle change-induced decline in fat mass, but not in lean mass, is associated with lower HF risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–e1032.

    PubMed  Google Scholar 

  38. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97(4):1784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barouch LA, Gao D, Chen L, Miller KL, Xu W, Phan AC, et al. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ Res. 2006;98(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  40. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107(7):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y, Sone M, et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes. 2009;58(12):2880–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi F, Simandi Z, Nagy L, Collins S. Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARgamma via long-range distal enhancers. J Biol Chem. 2021;297(2):100941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology. 2010;151(11):5218–25.

    Article  CAS  PubMed  Google Scholar 

  46. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A. 2000;97(8):4239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ndumele CE, Coresh J, Lazo M, Hoogeveen RC, Blumenthal RS, Folsom AR, et al. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail. 2014;2(6):600–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN, et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab. 2010;95(3):1404–11.

    Article  CAS  PubMed  Google Scholar 

  49. Florido R, Kwak L, Echouffo-Tcheugui JB, Zhang S, Michos ED, Nambi V, et al. Obesity, galectin-3, and incident heart failure: the ARIC study. J Am Heart Assoc. 2022;11(9):e023238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vergaro G, Gentile F, Meems LMG, Aimo A, Januzzi JL Jr, Richards AM, et al. NT-proBNP for risk prediction in heart failure: identification of optimal cutoffs across body mass index categories. JACC Heart Fail. 2021;9(9):653–63.

    Article  PubMed  Google Scholar 

  51. Ndumele CE, Matsushita K, Sang YY, Lazo M, Agarwal SK, Nambi V, et al. N-terminal pro-brain natriuretic peptide and heart failure risk among individuals with and without obesity the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2016;133(7):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;S1071-9164(21):00050-6.

  53. Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79(8):1647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 2000;14(10):1345–51.

    Article  CAS  PubMed  Google Scholar 

  55. Moro C, Klimcakova E, Lolmede K, Berlan M, Lafontan M, Stich V, et al. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia. 2007;50(5):1038–47.

    Article  CAS  PubMed  Google Scholar 

  56. Tsukamoto O, Fujita M, Kato M, Yamazaki S, Asano Y, Ogai A, et al. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J Am Coll Cardiol. 2009;53(22):2070–7.

    Article  CAS  PubMed  Google Scholar 

  57. Fox ER, Musani SK, Bidulescu A, Nagarajarao HS, Samdarshi TE, Gebreab SY, et al. Relation of obesity to circulating B-type natriuretic peptide concentrations in blacks: the Jackson Heart Study. Circulation. 2011;124(9):1021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PW, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600.

    Article  CAS  PubMed  Google Scholar 

  59. Das SR, Drazner MH, Dries DL, Vega GL, Stanek HG, Abdullah SM, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation. 2005;112(14):2163–8.

    Article  CAS  PubMed  Google Scholar 

  60. Neeland IJ, Winders BR, Ayers CR, Das SR, Chang AY, Berry JD, et al. Higher natriuretic peptide levels associate with a favorable adipose tissue distribution profile. J Am Coll Cardiol. 2013;62(8):752–60.

    Article  CAS  PubMed  Google Scholar 

  61. Bachmann KN, Gupta DK, Xu M, Brittain E, Farber-Eger E, Arora P, et al. Unexpectedly low natriuretic peptide levels in patients with heart failure. JACC Heart Fail. 2021;9(3):192–200.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Asferg CL, Andersen UB, Linneberg A, Goetze JP, Jeppesen JL. Obese hypertensive men have lower circulating proatrial natriuretic peptide concentrations despite greater left atrial size. Am J Hypertens. 2018;31(6):645–50.

    Article  CAS  PubMed  Google Scholar 

  63. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol. 2004;43(9):1590–5.

    Article  CAS  PubMed  Google Scholar 

  64. Pandey A, Berry JD, Lavie CJ. cardiometabolic disease leading to heart failure: better fat and fit than lean and lazy. Curr Heart Fail Rep. 2015;12(5):302–8.

    Article  PubMed  Google Scholar 

  65. Bayes-Genis A, Lloyd-Jones DM, van Kimmenade RR, Lainchbury JG, Richards AM, Ordonez-Llanos J, et al. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Arch Intern Med. 2007;167(4):400–7.

    Article  CAS  PubMed  Google Scholar 

  66. Christenson RH, Azzazy HM, Duh SH, Maynard S, Seliger SL, Defilippi CR. Impact of increased body mass index on accuracy of B-type natriuretic peptide (BNP) and N-terminal proBNP for diagnosis of decompensated heart failure and prediction of all-cause mortality. Clin Chem. 2010;56(4):633–41.

    Article  CAS  PubMed  Google Scholar 

  67. Ndumele CE, Matsushita K, Sang Y, Lazo M, Agarwal SK, Nambi V, et al. N-terminal pro-brain natriuretic peptide and heart failure risk among individuals with and without obesity: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2016;133(7):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, et al. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(23):e179–347.

    Article  PubMed  Google Scholar 

  69. McEvoy JW, Daya N, Tang O, Fang M, Ndumele CE, Coresh J, et al. High-sensitivity troponins and mortality in the general population. Eur Heart J. 2023;44(28):2595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation. 2011;123(13):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Florido R, Nambi V, Kwak L, Hoogeveen RC, Lazo M, Gerstenblith G, et al. Abstract 10970: independent and joint associations of obesity, physical activity, and galectin-3: the Atherosclerosis Risk in Communities study (ARIC). Circulation. 2018;138(Suppl_1):A10970-A.

    Google Scholar 

  73. Martinez-Martinez E, Calvier L, Rossignol P, Rousseau E, Fernandez-Celis A, Jurado-Lopez R, et al. Galectin-3 inhibition prevents adipose tissue remodelling in obesity. Int J Obes (Lond). 2016;40(6):1034–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    Article  CAS  PubMed  Google Scholar 

  75. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Everson SA, Goldberg DE, Helmrich SP, Lakka TA, Lynch JW, Kaplan GA, et al. Weight gain and the risk of developing insulin resistance syndrome. Diabetes Care. 1998;21(10):1637–43.

    Article  CAS  PubMed  Google Scholar 

  77. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89(3):309–19.

    Article  PubMed  Google Scholar 

  79. Dudina A, Cooney MT, Bacquer DD, Backer GD, Ducimetiere P, Jousilahti P, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil. 2011;18(5):731–42.

    Article  PubMed  Google Scholar 

  80. Horwich TB, Fonarow GC. Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. J Am Coll Cardiol. 2010;55(4):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cao W, Chen J, Chen Y, Chen X, Liu P. Advanced glycation end products promote heart failure through inducing the immune maturation of dendritic cells. Appl Biochem Biotechnol. 2014;172(8):4062–77.

    Article  CAS  PubMed  Google Scholar 

  82. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  PubMed  Google Scholar 

  83. Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta. 2016;1861(10):1525–34.

    Article  CAS  PubMed  Google Scholar 

  84. Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(3):193–205.

    Article  CAS  PubMed  Google Scholar 

  85. Kim JA, Montagnani M, Chandrasekran S, Quon MJ. Role of lipotoxicity in endothelial dysfunction. Heart Fail Clin. 2012;8(4):589–607.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation. 2016;134(23):e535–e78.

    Article  PubMed  Google Scholar 

  87. Messerli FH, Ventura HO, Reisin E, Dreslinski GR, Dunn FG, MacPhee AA, et al. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  88. Alberti KG, Zimmet P, Shaw J, Group IDFETFC. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  89. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  90. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med. 2003;163(4):427–36.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ingelsson E, Arnlov J, Lind L, Sundstrom J. Metabolic syndrome and risk for heart failure in middle-aged men. Heart. 2006;92(10):1409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morkedal B, Vatten LJ, Romundstad PR, Laugsand LE, Janszky I. Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trondelag Health Study). Norway. J Am Coll Cardiol. 2014;63(11):1071–8.

    Article  PubMed  Google Scholar 

  93. Commodore-Mensah Y, Lazo M, Tang O, Echouffo-Tcheugui JB, Ndumele CE, Nambi V, et al. High Burden of Subclinical and Cardiovascular Disease Risk in Adults with Metabolically Healthy Obesity: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 2021;44(7):1657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fauchier G, Bisson A, Bodin A, Herbert J, Semaan C, Angoulvant D, et al. Metabolically healthy obesity and cardiovascular events: A nationwide cohort study. Diabetes Obes Metab. 2021;23(11):2492–501.

    Article  PubMed  Google Scholar 

  95. Kaltman AJ, Goldring RM. Role of circulatory congestion in the cardiorespiratory failure of obesity. Am J Med. 1976;60(5):645–53.

    Article  CAS  PubMed  Google Scholar 

  96. Alpert MA, Omran J, Mehra A, Ardhanari S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog Cardiovasc Dis. 2014;56(4):391–400.

    Article  PubMed  Google Scholar 

  97. Alexander JK. Obesity and cardiac performance. Am J Cardiol. 1964;14:860–5.

    Article  CAS  PubMed  Google Scholar 

  98. • Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23. This in-depth review elucidates how obesity-induced physiological and metabolic shifts drive cardiac remodeling, leading to alterations in heart structure and function.

    Article  PubMed  Google Scholar 

  99. Grassi G, Facchini A, Trevano FQ, Dell'Oro R, Arenare F, Tana F, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46(2):321–5.

    Article  CAS  PubMed  Google Scholar 

  100. Grassi G, Seravalle G, Quarti-Trevano F, Dell'Oro R, Bolla G, Mancia G. Effects of hypertension and obesity on the sympathetic activation of heart failure patients. Hypertension. 2003;42(5):873–7.

    Article  CAS  PubMed  Google Scholar 

  101. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98(8):772–6.

    Article  CAS  PubMed  Google Scholar 

  102. Singh RB, Hristova K, Fedacko J, El-Kilany G, Cornelissen G. Chronic heart failure: a disease of the brain. Heart Fail Rev. 2019;24(2):301–7.

    Article  PubMed  Google Scholar 

  103. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137(15):1614–31.

    Article  CAS  PubMed  Google Scholar 

  104. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88(2):389–419.

    Article  CAS  PubMed  Google Scholar 

  105. Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21(10):1144–51.

    Article  PubMed  Google Scholar 

  106. Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: the hypertension connection. Curr Hypertens Rep. 2015;17(4):539.

    Article  PubMed  Google Scholar 

  107. Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wilner B, Garg S, Ayers CR, Maroules CD, McColl R, Matulevicius SA, et al. Dynamic relation of changes in weight and indices of fat distribution with cardiac structure and function: the Dallas Heart Study. J Am Heart Assoc. 2017;6(7):e005897.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat Clin Pract Cardiovasc Med. 2007;4(8):436–43.

    Article  CAS  PubMed  Google Scholar 

  110. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36.

    Article  CAS  PubMed  Google Scholar 

  111. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong CY, O'Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol. 2006;47(3):611–6.

    Article  PubMed  Google Scholar 

  113. Friedman SE, Andrus BW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obes. 2012;2012:505274.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed). 1984;288(6428):1401–4.

    Article  CAS  PubMed  Google Scholar 

  115. Sorimachi H, Obokata M, Takahashi N, Reddy YNV, Jain CC, Verbrugge FH, et al. Pathophysiologic importance of visceral adipose tissue in women with heart failure and preserved ejection fraction. Eur Heart J. 2021;42(16):1595–605.

    Article  PubMed  Google Scholar 

  116. Hall ME, Brinkley TE, Chughtai H, Morgan TM, Hamilton CA, Jordan JH, et al. Adiposity is associated with gender-specific reductions in left ventricular myocardial perfusion during dobutamine stress. PLoS One. 2016;11(1):e0146519.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119(12):1586–91.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Iacobellis G, Malavazos AE. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson Heart Study: comment on Liu et Al. Diabetes Care. 2010;33(9):e127. author reply e8

    Article  PubMed  Google Scholar 

  119. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71(20):2360–72.

    Article  CAS  PubMed  Google Scholar 

  120. Avila-Vanzzini N, Machain Leyva CZ, Rodriguez Castellanos LE, Arias Godinez JA, Ruiz Esparza ME, Herrera BH. Excessive weight and obesity are associated to intra-ventricular asynchrony: pilot study. J Cardiovasc Ultrasound. 2015;23(2):86–90.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8(8):657–66.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gorter TM, van Woerden G, Rienstra M, Dickinson MG, Hummel YM, Voors AA, et al. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8(8):667–76.

    Article  PubMed  Google Scholar 

  123. Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta. 2016;1861(10):1555–68.

    Article  CAS  PubMed  Google Scholar 

  124. Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab. 2014;25(5):255–62.

    Article  CAS  PubMed  Google Scholar 

  125. Jocken JW, Blaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol Behav. 2008;94(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  126. McGavock JM, Victor RG, Unger RH, Szczepaniak LS, American College of P, the American Physiological S. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  127. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.

    Article  CAS  PubMed  Google Scholar 

  128. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762–78.

    Article  CAS  PubMed  Google Scholar 

  129. Feijoo-Bandin S, Aragon-Herrera A, Morana-Fernandez S, Anido-Varela L, Tarazon E, Rosello-Lleti E, et al. Adipokines and inflammation: focus on cardiovascular diseases. Int J Mol Sci. 2020;21(20):7711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol. 2007;42(6):1065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiao J, Sun B, Li M, Wu Y, Sun XB. A novel adipocytokine visfatin protects against H(2)O(2) -induced myocardial apoptosis: a missing link between obesity and cardiovascular disease. J Cell Physiol. 2013;228(3):495–501.

    Article  CAS  PubMed  Google Scholar 

  132. Lim SY, Davidson SM, Paramanathan AJ, Smith CC, Yellon DM, Hausenloy DJ. The novel adipocytokine visfatin exerts direct cardioprotective effects. J Cell Mol Med. 2008;12(4):1395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91(5):434–40.

    Article  CAS  PubMed  Google Scholar 

  134. Zhong S, Guo H, Wang H, Xing D, Lu T, Yang J, et al. Apelin-13 alleviated cardiac fibrosis via inhibiting the PI3K/Akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. Biosci Rep. 2020;40(4):BSR20200040.

  135. Djoussé L, Wilk JB, Hanson NQ, Glynn RJ, Tsai MY, Gaziano JM. Association between adiponectin and heart failure risk in the physicians' health study. Obesity. 2013;21(4):831–4.

    Article  PubMed  Google Scholar 

  136. Ingelsson E, Riserus U, Berne C, Frystyk J, Flyvbjerg A, Axelsson T, et al. Adiponectin and risk of congestive heart failure. JAMA. 2006;295(15):1772–4.

    Article  CAS  PubMed  Google Scholar 

  137. Frankel DS, Vasan RS, D'Agostino RB Sr, Benjamin EJ, Levy D, Wang TJ, et al. Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol. 2009;53(9):754–62.

    Article  CAS  PubMed  Google Scholar 

  138. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93(4):277–9.

    Article  CAS  PubMed  Google Scholar 

  139. Tajmir P, Ceddia RB, Li RK, Coe IR, Sweeney G. Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinase- and phosphatidylinositol 3-kinase-dependent signaling pathways. Endocrinology. 2004;145(4):1550–5.

    Article  CAS  PubMed  Google Scholar 

  140. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension. 2000;36(4):501–5.

    Article  CAS  PubMed  Google Scholar 

  141. Bobbert P, Jenke A, Bobbert T, Kuhl U, Rauch U, Lassner D, et al. High leptin and resistin expression in chronic heart failure: adverse outcome in patients with dilated and inflammatory cardiomyopathy. Eur J Heart Fail. 2012;14(11):1265–75.

    Article  CAS  PubMed  Google Scholar 

  142. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N. Obesity and risk of incident heart failure in older men with and without pre-existing coronary heart disease: does leptin have a role? J Am Coll Cardiol. 2011;58(18):1870–7.

    Article  CAS  PubMed  Google Scholar 

  143. Menzel J, di Giuseppe R, Biemann R, Wittenbecher C, Aleksandrova K, Eichelmann F, et al. Association between chemerin, omentin-1 and risk of heart failure in the population-based EPIC-Potsdam study. Sci Rep. 2017;7(1):14171.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Butler J, Kalogeropoulos A, Georgiopoulou V, de Rekeneire N, Rodondi N, Smith AL, et al. Serum resistin concentrations and risk of new onset heart failure in older persons: the health, aging, and body composition (Health ABC) study. Arterioscler Thromb Vasc Biol. 2009;29(7):1144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bajaj NS, Osborne MT, Gupta A, Tavakkoli A, Bravo PE, Vita T, et al. Coronary microvascular dysfunction and cardiovascular risk in obese patients. J Am Coll Cardiol. 2018;72(7):707–17.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9.

    Article  CAS  PubMed  Google Scholar 

  147. Tona F, Serra R, Di Ascenzo L, Osto E, Scarda A, Fabris R, et al. Systemic inflammation is related to coronary microvascular dysfunction in obese patients without obstructive coronary disease. Nutr Metab Cardiovasc Dis. 2014;24(4):447–53.

    Article  CAS  PubMed  Google Scholar 

  148. Bagi Z, Broskova Z, Feher A. Obesity and coronary microvascular disease - implications for adipose tissue-mediated remote inflammatory response. Curr Vasc Pharmacol. 2014;12(3):453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Simmonds SJ, Cuijpers I, Heymans S, Jones EAV. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9(1):242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4(4):312–24.

    Article  PubMed  Google Scholar 

  151. Carbone S, Del Buono MG, Ozemek C, Lavie CJ. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog Cardiovasc Dis. 2019;62(4):327–33.

    Article  PubMed  Google Scholar 

  152. Celis-Morales CA, Lyall DM, Anderson J, Iliodromiti S, Fan Y, Ntuk UE, et al. The association between physical activity and risk of mortality is modulated by grip strength and cardiorespiratory fitness: evidence from 498 135 UK-Biobank participants. Eur Heart J. 2017;38(2):116–22.

    PubMed  Google Scholar 

  153. Simoes MDS, Wehrmeister F, Romiti M, Gagliardi AT, Arantes R, Dourado VZ. Effect modification of cardiorespiratory fitness, obesity, and physical activity in adults. Int J Sports Med. 2022;43(6):561–6.

    Google Scholar 

  154. Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC. Association of physical activity or fitness with incident heart failure: a systematic review and meta-analysis. Circ Heart Fail. 2015;8(5):853–61.

    Article  CAS  PubMed  Google Scholar 

  155. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  156. Berry JD, Pandey A, Gao A, Leonard D, Farzaneh-Far R, Ayers C, et al. Physical fitness and risk for heart failure and coronary artery disease. Circ Heart Fail. 2013;6(4):627–34.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Florido R, Kwak L, Lazo M, Nambi V, Ahmed HM, Hegde SM, et al. Six-year changes in physical activity and the risk of incident heart failure: ARIC study. Circulation. 2018;137(20):2142–51.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Florido R, Kwak L, Lazo M, Michos ED, Nambi V, Blumenthal RS, et al. Physical activity and incident heart failure in high-risk subgroups: the ARIC study. J Am Heart Assoc. 2020;9(10):e014885.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Florido R, Ndumele CE, Kwak L, Pang Y, Matsushita K, Schrack JA, et al. Physical activity, obesity, and subclinical myocardial damage. JACC Heart Fail. 2017;5(5):377–84.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation. 2009;119(1):44–52.

    Article  PubMed  Google Scholar 

  161. Hu G, Jousilahti P, Antikainen R, Katzmarzyk PT, Tuomilehto J. Joint effects of physical activity, body mass index, waist circumference, and waist-to-hip ratio on the risk of heart failure. Circulation. 2010;121(2):237–44.

    Article  PubMed  Google Scholar 

  162. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

BO and CEN were supported by the American Heart Association grant AHA20SFRN35120152. CEN was also supported by NIH/NHLBI grant R01HL146907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiadi E. Ndumele.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, B., Ndumele, C.E. Exploring the Mechanistic Link Between Obesity and Heart Failure. Curr Diab Rep 23, 347–360 (2023). https://doi.org/10.1007/s11892-023-01526-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-023-01526-y

Keywords

Navigation