Skip to main content

Advertisement

Log in

Biological and Genetic Markers in Occupational Asthma

  • Occupational Allergies (JA Poole, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Occupational asthma (OA) is a complex disease that is often hard to diagnose due to difficulties in detecting relevant exposure, along with inherent differences in disease susceptibility. Numerous studies have attempted to identify relevant biological and genetic markers for OA and to devise tools capable of detecting exposure to the causative agent. Immunological markers, including skin prick test reactivity and specific IgE and IgG antibodies can be used to detect high-molecular-weight allergens in cases of baker’s asthma. For OA induced by low-molecular-weight agents, such as isocyanate, potential biomarkers include serum-specific IgE and IgG antibodies to isocyanate-HSA conjugate and IgG to cytokeratin 19 and transglutaminase-2. For protein-based markers, ferritin/transferrin and vitamin D-binding protein levels have been suggested for isocyanate-OA. Genetic markers of susceptibility to isocyanate-OA include human leukocyte antigen and CTNNA3. Further investigations will be needed to identify better biomarkers for OA, which may be used to inform clinical decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sabin BR, Grammer LC. Chapter 17: occupational immunologic lung disease. Allergy Asthma Proc. 2012;33:S58–60.

    Article  PubMed  Google Scholar 

  2. Tarlo SM, Balmes J, Balkissoon R, Beach J, Beckett W, Bernstein D, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. Chest. 2008;134:1S–41.

  3. Toren K, Blanc PD. Asthma caused by occupational exposures is common—a systematic analysis of estimates of the population-attributable fraction. BMC Pulm Med. 2009;9:7.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dykewicz MS. Occupational asthma: current concepts in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2009;123:519–28.

    Article  PubMed  Google Scholar 

  5. Holgate ST. Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy Asthma Immunol Res. 2013;5:343–7.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vandenplas O. Occupational asthma: etiologies and risk factors. Allergy Asthma Immunol Res. 2011;3:157–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Quirce S, Diaz-Perales A. Diagnosis and management of grain-induced asthma. Allergy Asthma Immunol Res. 2013;5:348–56.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Baur X. Baker's asthma: causes and prevention. Int Arch Occup Environ Health. 1999;72:292–6.

    Article  CAS  PubMed  Google Scholar 

  9. Cullinan P, Lowson D, Nieuwenhuijsen MJ, Gordon S, Tee RD, Venables KM, et al. Work related symptoms, sensitisation, and estimated exposure in workers not previously exposed to laboratory rats. Occup Environ Med. 1994;51:589–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. De Zotti R, Larese F, Bovenzi M, Negro C, Molinari S. Allergic airway disease in Italian bakers and pastry makers. Occup Environ Med. 1994;51:548–52.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zuskin E, Kanceljak B, Mustajbegovic J, Schachter EN, Stilinovic L. Respiratory symptoms and immunological status in poultry food processing workers. Int Arch Occup Environ Health. 1994;66:339–42.

    Article  CAS  PubMed  Google Scholar 

  12. Beach J, Russell K, Blitz S, Hooton N, Spooner C, Lemiere C, et al. A systematic review of the diagnosis of occupational asthma. Chest. 2007;131:569–78.

    Article  PubMed  Google Scholar 

  13. Sander I, Merget R, Degens PO, Goldscheid N, Brüning T, Raulf-Heimsoth M. Comparison of wheat and rye flour skin prick test solutions for diagnosis of baker’s asthma. Allergy. 2004;59:95–8.

    Article  CAS  PubMed  Google Scholar 

  14. van Kampen V, Rabstein S, Sander I, Merget R, Brüning T, Broding HC, et al. Prediction of challenge test results by flour-specific IgE and skin prick test in symptomatic bakers. Allergy. 2008;63:897–902.

    Article  PubMed  Google Scholar 

  15. Houba R, Heederik D, Doekes G. Wheat sensitization and work-related symptoms in the baking industry are preventable. An epidemiologic study. Am J Respir Crit Care Med. 1998;158:1499–503.

    Article  CAS  PubMed  Google Scholar 

  16. Houba R, Van Run P, Heederik D, Doekes G. Wheat antigen exposure assessment for epidemiological studies in bakeries using personal dust sampling and inhibition ELISA. Clin Exp Allergy. 1996;26:154–63.

    Article  CAS  PubMed  Google Scholar 

  17. Musk AW, Venables KM, Crook B, Nunn AJ, Hawkins R, Crook GD, et al. Respiratory symptoms, lung function, and sensitisation to flour in a British bakery. Br J Ind Med. 1989;46:636–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Houba R, Heederik D, Kromhout H. Grouping strategies for exposure to inhalable dust, wheat allergens and alpha-amylase allergens in bakeries. Ann Occup Hyg. 1997;41:287–96.

    CAS  PubMed  Google Scholar 

  19. Tiikkainen U, Klockars M. Clinical significance of IgG subclass antibodies to wheat flour antigens in bakers. Allergy. 1990;45:497–504.

    Article  CAS  PubMed  Google Scholar 

  20. Battais F, Pineau F, Popineau Y, Aparicio C, Kanny G, Guerin L, et al. Food allergy to wheat: identification of immunogloglin E and immunoglobulin G-binding proteins with sequential extracts and purified proteins from wheat flour. Clin Exp Allergy. 2003;33:962–70.

    Article  CAS  PubMed  Google Scholar 

  21. Pfeil T, Schwabl U, Ulmer WT, Konig W. Western blot analysis of water-soluble wheat flour (Triticum vulgaris) allergens. Int Arch Allergy Appl Immunol. 1990;91:224–31.

    Article  CAS  PubMed  Google Scholar 

  22. Hur GY, Koh DH, Kim HA, Park HJ, Ye YM, Kim KS, et al. Prevalence of work-related symptoms and serum-specific antibodies to wheat flour in exposed workers in the bakery industry. Respir Med. 2008;102:548–55.

    Article  PubMed  Google Scholar 

  23. Jones M, Jeal H, Schofield S, Harris JM, Shamji MH, Francis JN, et al. Rat-specific IgG and IgG4 antibodies associated with inhibition of IgE-allergen complex binding in laboratory animal workers. Occup Environ Med. 2014;71:619-23.

  24. Caballero ML, Ordaz E, Bermejo M, Rodriguez-Perez R, Alday E, Maqueda J, et al. Characterization of occupational sensitization by multiallergen immunoblotting in workers exposed to laboratory animals. Ann Allergy Asthma Immunol. 2012;108:178–81.

    Article  CAS  PubMed  Google Scholar 

  25. Malo JL, Cardinal S, Ghezzo H, L'Archevêque J, Castellanos L, Maghni K. Association of bronchial reactivity to occupational agents with methacholine reactivity, sputum cells and immunoglobulin E-mediated reactivity. Clin Exp Allergy. 2011;41:497–504.

    Article  CAS  PubMed  Google Scholar 

  26. Baatjies R, Jeebhay MF. Sensitisation to cereal flour allergens is a major determinant of elevated exhaled nitric oxide in bakers. Occup Environ Med. 2013;70:310–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MH, Jung JW, Kang HR. The usefulness of job relocation and serum eosinophil cationic protein in baker’s asthma. Int Arch Allergy Immunol. 2013;161:252–7.

    Article  PubMed  Google Scholar 

  28. Quirce S. IgE antibodies in occupational asthma: are they causative or an associated phenomenon? Curr Opin Allergy Clin Immunol. 2014;14:100–5.

    Article  CAS  PubMed  Google Scholar 

  29. Baur X, Czuppon A. Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol. 1995;96:489–94.

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein JA, Ghosh D, Sublett WJ, Wells H, Levin L. Is trimellitic anhydride skin testing a sufficient screening tool for selectively identifying TMA-exposed workers with TMA-specific serum IgE antibodies? J Occup Environ Med. 2011;53:1122–7.

    Article  CAS  PubMed  Google Scholar 

  31. O'Brien IM, Harries MG, Burge PS, Pepys J. Toluene di-isocyanate-induced asthma. I. Reactions to TDI, MDI, HDI and histamine. Clin Allergy. 1979;9:1–6.

    Article  PubMed  Google Scholar 

  32. Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014;370:640–9.

    Article  CAS  PubMed  Google Scholar 

  33. Keskinen H, Tupasela O, Tiikkainen U, Nordman H. Experiences of specific IgE in asthma due to diisocyanates. Clin Allergy. 1988;18:597–604.

    Article  CAS  PubMed  Google Scholar 

  34. Pezzini A, Riviera A, Paggiaro P, Spiazzi A, Gerosa F, Filieri M, et al. Specific IgE antibodies in twenty-eight workers with diisocyanate-induced bronchial asthma. Clin Allergy. 1984;14:453–61.

    Article  CAS  PubMed  Google Scholar 

  35. Baur X, Dewair M, Fruhmann G. Detection of immunologically sensitized isocyanate workers by RAST and intracutaneous skin tests. J Allergy Clin Immunol. 1984;73:610–8.

    Article  CAS  PubMed  Google Scholar 

  36. Cartier A, Grammer L, Malo JL, Lagier F, Ghezzo H, Harris K, et al. Specific serum antibodies against isocyanates: association with occupational asthma. J Allergy Clin Immunol. 1989;84:507–14.

    Article  CAS  PubMed  Google Scholar 

  37. Park HS, Kim HY, Nahm DH, Son JW, Kim YY. Specific IgG, but not specific IgE, antibodies to toluene diisocyanate-human serum albumin conjugate are associated with toluene diisocyanate bronchoprovocation test results. J Allergy Clin Immunol. 1999;104:847–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ye YM, Kim CW, Kim HR, Kim HM, Suh CH, Nahm DH, et al. Biophysical determinants of toluene diisocyanate antigenicity associated with exposure and asthma. J Allergy Clin Immunol. 2006;118:885–91.

    Article  CAS  PubMed  Google Scholar 

  39. Hur GY, Koh DH, Choi GS, Park HJ, Choi SJ, Ye YM, et al. Clinical and immunologic findings of methylene diphenyl diisocyanate-induced occupational asthma in a car upholstery factory. Clin Exp Allergy. 2008;38:586–93.

    Article  CAS  PubMed  Google Scholar 

  40. Budnik LT, Preisser AM, Permentier H, Baur X. Is specific IgE antibody analysis feasible for the diagnosis of methylenediphenyl diisocyanate-induced occupational asthma? Int Arch Occup Environ Health. 2013;86:417–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Raulf-Heimsoth M, Liebig R, Marczynski B, Borowitzki G, Bernard S, Freundt S, et al. Implementation of non-invasive methods in the diagnosis of diisocyanate-induced asthma. Adv Exp Med Biol. 2013;788:293–300.

    Article  CAS  PubMed  Google Scholar 

  42. Jonaid BS, Pronk A, Doekes G, Heederik D. Exhaled nitric oxide in spray painters exposed to isocyanates: effect modification by atopy and smoking. Occup Environ Med. 2014;71:415–22.

    Article  CAS  PubMed  Google Scholar 

  43. Sabbioni G, Gu Q, Vanimireddy LR. Determination of isocyanate specific albumin-adducts in workers exposed to toluene diisocyanates. Biomarkers. 2012;17:150–9.

    Article  CAS  PubMed  Google Scholar 

  44. Shin YS, Kim MA, Pham LD, Park HS. Cells and mediators in diisocyanate-induced occupational asthma. Curr Opin Allergy Clin Immunol. 2013;13:125–31.

    Article  CAS  PubMed  Google Scholar 

  45. Choi JH, Nahm DH, Kim SH, Kim YS, Suh CH, Park HS, et al. Increased levels of IgG to cytokeratin 19 in sera of patients with toluene diisocyanate-induced asthma. Ann Allergy Asthma Immunol. 2004;93:293–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ye YM, Nahm DH, Kim CW, Kim HR, Hong CS, Park CS, et al. Cytokeratin autoantibodies: useful serologic markers for toluene diisocyanate-induced asthma. Yonsei Med J. 2006;47:773–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hur GY, Kim SH, Park SM, Ye YM, Kim CW, Jang AS, et al. Tissue transglutaminase can be involved in airway inflammation of toluene diisocyanate-induced occupational asthma. J Clin Immunol. 2009;29:786–94.

    Article  CAS  PubMed  Google Scholar 

  48. le Pham D, Kim MA, Yoon MG, Lee SI, Shin YS, Park HS. Serum specific IgG response to toluene diisocyanate-tissue transglutaminase conjugate in toluene diisocyanate-induced occupational asthmatics. Ann Allergy Asthma Immunol. 2014;113:48–54. Provided data that TDI binds to tTG to form a conjugate that can induce serum specific IgG antibody.

    Article  CAS  Google Scholar 

  49. Hur GY, Choi GS, Sheen SS, Lee HY, Park HJ, Choi SJ, et al. Serum ferritin and transferrin levels as serologic markers of methylene diphenyl diisocyanate-induced occupational asthma. J Allergy Clin Immunol. 2008;122:774–80.

    Article  CAS  PubMed  Google Scholar 

  50. Sastre J, Sastre B, Fernández-Nieto M, Pérez-Camo I, Sánchez JJ, del Pozo V. Serum ferritin and transferrin levels are not serologic markers of toluene diisocyanate-induced occupational asthma. J Allergy Clin Immunol. 2010;125:762–4.

    Article  CAS  PubMed  Google Scholar 

  51. Kim SH, Choi GS, Nam YH, Kim JH, Hur GY, Kim SH, et al. Role of vitamin D-binding protein in isocyanate-induced occupational asthma. Exp Mol Med. 2012;44:319–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Jung KS, Park HS. Evidence for neutrophil activation in occupational asthma. Respirology. 1999;4:303–6.

    Article  CAS  PubMed  Google Scholar 

  53. Park H, Jung K, Kim H, Nahm D, Kang K. Neutrophil activation following TDI bronchial challenges to the airway secretion from subjects with TDI-induced asthma. Clin Exp Allergy. 1999;29:1395–401.

    Article  CAS  PubMed  Google Scholar 

  54. Lee YC, Song CH, Lee HB, Oh JL, Rhee YK, Park HS, et al. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J Allergy Clin Immunol. 2001;108:1021–6.

    Article  CAS  PubMed  Google Scholar 

  55. Park HS, Kim HA, Jung JW, Kim YK, Lee SK, Kim SS, et al. Metalloproteinase-9 is increased after toluene diisocyanate exposure in the induced sputum from patients with toluene diisocyanate-induced asthma. Clin Exp Allergy. 2003;33:113–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lee KS, Jin SM, Lee H, Lee YC. Imbalance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in toluene diisocyanate-induced asthma. Clin Exp Allergy. 2004;34:276–84.

    Article  CAS  PubMed  Google Scholar 

  57. Lee YC, Kwak YG, Song CH. Contribution of vascular endothelial growth factor to airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Immunol. 2002;168:3595–600.

    Article  CAS  PubMed  Google Scholar 

  58. Choi JH, Suh YJ, Lee SK, Suh CH, Nahm DH, Park HS. Acute and chronic changes of vascular endothelial growth factor (VEGF) in induced sputum of toluene diisocyanate (TDI)-induced asthma patients. J Korean Med Sci. 2004;19:359–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee KS, Park SJ, Kim SR, Min KH, Jin SM, Lee HK, et al. Modulation of airway remodeling and airway inflammation by peroxisome proliferator-activated receptor gamma in a murine model of toluene diisocyanate-induced asthma. J Immunol. 2006;177:5248–57.

    Article  CAS  PubMed  Google Scholar 

  60. Mattos W, Lim S, Russell R, Jatakanon A, Chung KF, Barnes PJ. Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest. 2002;122:1543–52.

    Article  CAS  PubMed  Google Scholar 

  61. Kim JH, Kim JE, Choi GS, Kim HY, Ye YM, Park HS. Serum cytokines markers in toluene diisocyanate-induced asthma. Respir Med. 2011;105:1091–4. Provided data that serum cytokine MMP-9 levels may be used as a serological biomarker for identifying TDI-OA patients with high sensitivity and specificity.

    Article  PubMed  Google Scholar 

  62. Barbaro MP, Spanevello A, Palladino GP, Salerno FG, Lacedonia D, Carpagnano GE. Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur J Intern Med. 2014;25:92–6.

    Article  CAS  PubMed  Google Scholar 

  63. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004;64:631–49.

    Article  CAS  PubMed  Google Scholar 

  64. Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75:930-9.

  65. Taylor AN. Role of human leukocyte antigen phenotype and exposure in development of occupational asthma. Curr Opin Allergy Clin Immunol. 2001;1:157–61.

    Article  CAS  PubMed  Google Scholar 

  66. Jeal H, Draper A, Jones M, Harris J, Welsh K, Taylor AN, et al. HLA associations with occupational sensitization to rat lipocalin allergens: a model for other animal allergies? J Allergy Clin Immunol. 2003;111:795–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kauppinen A, Peräsaari J, Taivainen A, Kinnunen T, Saarelainen S, Rytkönen-Nissinen M, et al. Association of HLA class II alleles with sensitization to cow dander Bos d 2, an important occupational allergen. Immunobiology. 2012;217:8–12.

    Article  CAS  PubMed  Google Scholar 

  68. Bignon JS, Aron Y, Ju LY, Kopferschmitt MC, Garnier R, Mapp C, et al. HLA class II alleles in isocyanate-induced asthma. Am J Respir Crit Care Med. 1994;149:71–5.

    Article  CAS  PubMed  Google Scholar 

  69. Balboni A, Baricordi OR, Fabbri LM, Gandini E, Ciaccia A, Mapp CE. Association between toluene diisocyanate-induced asthma and DQB1 markers: a possible role for aspartic acid at position 57. Eur Respir J. 1996;9:207–10.

    Article  CAS  PubMed  Google Scholar 

  70. Mapp CE, Beghè B, Balboni A, Zamorani G, Padoan M, Jovine L, et al. Association between HLA genes and susceptibility to toluene diisocyanate-induced asthma. Clin Exp Allergy. 2000;30:651–6.

    Article  CAS  PubMed  Google Scholar 

  71. Beghé B, Padoan M, Moss CT, Barton SJ, Holloway JW, Holgate ST, et al. Lack of association of HLA class I genes and TNF alpha-308 polymorphism in toluene diisocyanate-induced asthma. Allergy. 2004;59:61–4.

    Article  PubMed  Google Scholar 

  72. Kim SH, Oh HB, Lee KW, Shin ES, Kim CW, Hong CS, et al. HLA DRB1*15-DPB1*05 haplotype: a susceptible gene marker for isocyanate-induced occupational asthma? Allergy. 2006;61:891–4.

    Article  CAS  PubMed  Google Scholar 

  73. Choi JH, Lee KW, Kim CW, Park CS, Lee HY, Hur GY, et al. The HLA DRB1*1501-DQB1*0602-DPB1*0501 haplotype is a risk factor for toluene diisocyanate-induced occupational asthma. Int Arch Allergy Immunol. 2009;150:156–63.

    Article  CAS  PubMed  Google Scholar 

  74. Hur GY, Lee KW, Lee HY, Choi GS, Park HJ, Ye YM, et al. HLA class II allele and IgG sensitization to methylene diisocyanate in exposed workers. Ann Allergy Asthma Immunol. 2009;103:174–5.

    Article  CAS  PubMed  Google Scholar 

  75. Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur Respir J. 2000;15:911–4.

    Article  CAS  PubMed  Google Scholar 

  76. Jones MG, Nielsen J, Welch J, Harris J, Welinder H, Bensryd I, et al. Association of HLA-DQ5 and HLA-DR1 with sensitization to organic acid anhydrides. Clin Exp Allergy. 2004;34:812–6.

    Article  CAS  PubMed  Google Scholar 

  77. Gao Z, Dosman JA, Rennie DC, Schwartz DA, Yang IV, Beach J, et al. Association of Toll-like receptor 2 gene polymorphisms with lung function in workers in swine operations. Ann Allergy Asthma Immunol. 2013;110:44.

    Article  CAS  PubMed  Google Scholar 

  78. Kitchens RL. Role of CD14 in cellular recognition of bacterial lipopolysaccharides. Chem Immunol. 2000;74:61–82.

    Article  CAS  PubMed  Google Scholar 

  79. Pacheco KA, Rose CS, Silveira LJ, Van Dyke MV, Goelz K, MacPhail K, et al. Gene-environment interactions influence airways function in laboratory animal workers. J Allergy Clin Immunol. 2010;126:232–40.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Smit LA, Heederik D, Doekes G, Koppelman GH, Bottema RW, Postma DS, et al. Endotoxin exposure, CD14 and wheeze among farmers: a gene–environment interaction. Occup Environ Med. 2011;68:826–31.

    Article  CAS  PubMed  Google Scholar 

  81. Israel E, Chinchilli VM, Ford JG, Boushey HA, Cherniack R, Craig TJ, et al. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. 2004;364:1505–12.

    Article  CAS  PubMed  Google Scholar 

  82. Hur GY, Park HJ, Lee HY, Koh DH, Lee BJ, Choi GS, et al. Association of β2-adrenergic receptor polymorphism with work-related symptoms in workers exposed to wheat flour. Yonsei Med J. 2011;52:488–94.

  83. Cho HJ, Kim SH, Kim JH, Choi H, Son JK, Hur GY, et al. Effect of Toll-like receptor 4 gene polymorphisms on work-related respiratory symptoms and sensitization to wheat flour in bakery workers. Ann Allergy Asthma Immunol. 2011;107:57–64.

    Article  CAS  PubMed  Google Scholar 

  84. Kim SH, Hur GY, Jin HJ, Choi H, Park HS. Effect of interleukin-18 gene polymorphisms on sensitization to wheat flour in bakery workers. J Korean Med Sci. 2012;27:382–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Hur GY, Ye YM, Koh DH, Kim SH, Park HS. IL-4 receptor α polymorphisms may be a susceptible factor for work-related respiratory symptoms in bakery workers. Allergy Asthma Immunol Res. 2013;5:371–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Acouetey DS, Zmirou-Navier D, Avogbe PH, Tossa P, Rémen T, Barbaud A, et al. Genetic predictors of inflammation in the risk of occupational asthma in young apprentices. Ann Allergy Asthma Immunol. 2013;110:423.

    Article  CAS  PubMed  Google Scholar 

  87. Mapp CE, Fryer AA, De Marzo N, Pozzato V, Padoan M, Boschetto P, et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immunol. 2002;109:867–72.

    Article  CAS  PubMed  Google Scholar 

  88. Broberg KE, Warholm M, Tinnerberg H, Axmon A, Jönsson BA, Sennbro CJ, et al. The GSTP1 Ile105 Val polymorphism modifies the metabolism of toluene di-isocyanate. Pharmacogenet Genomics. 2010;20:104–11.

    Article  CAS  PubMed  Google Scholar 

  89. Kim SH, Cho BY, Park CS, Shin ES, Cho EY, Yang EM, et al. Alpha-T-catenin (CTNNA3) gene was identified as a risk variant for toluene diisocyanate-induced asthma by genome-wide association analysis. Clin Exp Allergy. 2009;39:203–12.

    Article  CAS  PubMed  Google Scholar 

  90. Bernstein DI, Kashon M, Lummus ZL, Johnson VJ, Fluharty K, Gautrin D, et al. CTNNA3 (α-catenin) gene variants are associated with diisocyanate asthma: a replication study in a Caucasian worker population. Toxicol Sci. 2013;131:242–6. Provided replicated results that CTNNA3 (α-catenin) gene from GWAS are associated with diisocyanate-OA in Caucasians.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Bernstein DI, Kissling GE, Khurana Hershey G, Yucesoy B, Johnson VJ, Cartier A, et al. Hexamethylene diisocyanate asthma is associated with genetic polymorphisms of CD14, IL-13, and IL-4 receptor α. J Allergy Clin Immunol. 2011;128:418–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Tee RD, Cullinan P, Welch J, Burge PS, Newman-Taylor AJ. Specific IgE to isocyanates: a useful diagnostic role in occupational asthma. J Allergy Clin Immunol. 1998;101:709–15.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Gyu-Young Hur and Hae-Sim Park declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Sim Park.

Additional information

This article is part of the Topical Collection on Occupational Allergies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, GY., Park, HS. Biological and Genetic Markers in Occupational Asthma. Curr Allergy Asthma Rep 15, 488 (2015). https://doi.org/10.1007/s11882-014-0488-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0488-7

Keywords

Navigation