Skip to main content

Advertisement

Log in

Asthma epidemiology and risk factors

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Asthma is a clinical syndrome that affects all age groups. Asthma prevalence worldwide has seen a rapid increase in the latter part of the last century. Recent data has shown that asthma prevalence has plateaued and even decreased in some areas of the world, despite continuing to increase in other areas of the world. Many risk factors have been associated with asthma and the differences in distributions of these risk factors may explain the differences in prevalence. This article will review recent trends in the prevalence of asthma and recent studies that investigate risk factors of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246

    Article  PubMed  PubMed Central  Google Scholar 

  2. National Asthma Education and Prevention Program (2007) Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma-summary report. J Allergy Clin Immunol 120(5 Suppl):S94–S138

    Google Scholar 

  3. Centers for Disease Control. Most recent national asthma data. 2019; Available from: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm.

  4. Ellwood P, et al. (2017) The Global Asthma Network rationale andmethods for Phase I global surveillance: prevalence, severity, management and risk factors. Eur Respir J 49(1): 1601605 https://doi.org/10.1183/13993003.01605-2016.

  5. (1996) Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J 9(4):687–95.

  6. Boulet LP, et al. (2019) The Global Initiative for Asthma (GINA): 25 years later. Eur Respir J 54(2)

  7. Ashman JJ, Rui P, Okeyode T (2016) Characteristics of office-based physician visits. NCHS Data Brief 2019(331):1–8

    Google Scholar 

  8. CDC Asthma Stats Reports and Publications. September 3rd, 2019]; Available from: https://www.cdc.gov/asthma/reports_publications.htm.

  9. Rosenthal M (2002) Differential diagnosis of asthma. Paediatr Respir Rev 3(2):148–153

    Article  PubMed  Google Scholar 

  10. Ullmann N et al (2018) Asthma: differential diagnosis and comorbidities. Front Pediatr 6:276

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hall SC, Agrawal DK (2017) Vitamin D and bronchial asthma: an overview of data from the past 5 years. Clin Ther 39(5):917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yurt M et al (2014) Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency. Am J Phys Lung Cell Mol Phys 307(11):L859–L867

    CAS  Google Scholar 

  13. Litonjua AA (2012) The role of vitamin D in the development, exacerbation, and severity of asthma and allergic diseases. In: Litonjua AA (ed) In Vitamin D and the lung: mechanisms and disease associations. Humana Press, New York

    Chapter  Google Scholar 

  14. Bashir A, Litonjua AA (2018) Observational studies of vitamin D associations with asthma: problems and pitfalls. Pediatr Pulmonol 53(10):1338–1339

    Article  PubMed  Google Scholar 

  15. Wolsk HM et al (2017) Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: a combined analysis of two randomized controlled trials. PLoS One 12(10):e0186657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jolliffe DA et al (2017) Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med 5(11):881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castro M et al (2014) Effect of vitamin D3 on asthma treatment failures in adults with symptomatic asthma and lower vitamin D levels: the VIDA randomized clinical trial. JAMA 311(20):2083–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heederik D, von Mutius E (2012) Does diversity of environmental microbial exposure matter for the occurrence of allergy and asthma? J Allergy Clin Immunol 130(1):44–50

    Article  PubMed  Google Scholar 

  19. Olszak T et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336(6080):489–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ege MJ et al (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364(8):701–709

    Article  CAS  PubMed  Google Scholar 

  21. Waser M et al (2007) Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clin Exp Allergy 37(5):661–670

    Article  CAS  PubMed  Google Scholar 

  22. Huang YJ, Boushey HA (2015) The microbiome in asthma. J Allergy Clin Immunol 135(1):25–30

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ownby DR, Johnson CC, Peterson EL (2002) Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 288(8):963–972

    Article  PubMed  Google Scholar 

  24. Wegienka G, Zoratti E, Johnson CC (2015) The role of the early-life environment in the development of allergic disease. Immunol Allergy Clin N Am 35(1):1–17

    Article  Google Scholar 

  25. Fujimura KE et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A 111(2):805–810

    Article  CAS  PubMed  Google Scholar 

  26. Sitarik AR et al (2018) Dog introduction alters the home dust microbiota. Indoor Air 28(4):539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561

    Article  PubMed  Google Scholar 

  28. Jernberg C et al (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1(1):56–66

    Article  CAS  PubMed  Google Scholar 

  29. Azad MB et al (2016) Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123(6):983–993

    Article  CAS  PubMed  Google Scholar 

  30. Wypych TP, Marsland BJ (2018) Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol 39(9):697–711

    Article  CAS  PubMed  Google Scholar 

  31. Sordillo JE et al (2017) Factors influencing the infant gut microbiome at age 3–6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 139(2):482–491 e14

    Article  PubMed  Google Scholar 

  32. Ho NT et al (2018) Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun 9(1):4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rutayisire E et al (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol 16(1):86

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harju M et al (2016) Parental smoking and cessation during pregnancy and the risk of childhood asthma. BMC Public Health 16:428

    Article  PubMed  PubMed Central  Google Scholar 

  35. McEvoy CT, Spindel ER (2017) Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev 21:27–33

    PubMed  Google Scholar 

  36. Gibbs K, Collaco JM, McGrath-Morrow SA (2016) Impact of tobacco smoke and nicotine exposure on lung development. Chest 149(2):552–561

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burke H et al (2012) Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics 129(4):735–744

    Article  PubMed  Google Scholar 

  38. Neophytou AM et al (2018) Secondhand smoke exposure and asthma outcomes among African-American and Latino children with asthma. Thorax 73(11):1041–1048

    Article  PubMed  Google Scholar 

  39. Coogan PF et al (2015) Active and passive smoking and the incidence of asthma in the Black Women’s Health Study. Am J Respir Crit Care Med 191(2):168–176

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silverman RA et al (2017) Multicenter study of cigarette smoking among adults with asthma exacerbations in the emergency department, 2011–2012. Respir Med 125:89–91

    Article  PubMed  Google Scholar 

  41. Schweitzer RJ et al (2017) E-cigarette use and asthma in a multiethnic sample of adolescents. Prev Med 105:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gref A et al (2017) Genome-wide interaction analysis of air pollution exposure and childhood asthma with functional follow-up. Am J Respir Crit Care Med 195(10):1373–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burbank AJ, Peden DB (2018) Assessing the impact of air pollution on childhood asthma morbidity: how, when, and what to do. Curr Opin Allergy Clin Immunol 18(2):124–131

    Article  PubMed  PubMed Central  Google Scholar 

  45. Korten I, Ramsey K, Latzin P (2017) Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 21:38–46

    PubMed  Google Scholar 

  46. Hsu HH et al (2015) Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med 192(9):1052–1059

    Article  CAS  PubMed  Google Scholar 

  47. Dove MS, Dockery DW, Connolly GN (2011) Smoke-free air laws and asthma prevalence, symptoms, and severity among nonsmoking youth. Pediatrics 127(1):102–109

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gauderman WJ et al (2015) Association of improved air quality with lung development in children. N Engl J Med 372(10):905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Willis-Owen SAG, Cookson WOC, Moffatt MF (2018) The genetics and genomics of asthma. Annu Rev Genomics Hum Genet 19:223–246

    Article  CAS  PubMed  Google Scholar 

  50. Ullemar V et al (2016) Heritability and confirmation of genetic association studies for childhood asthma in twins. Allergy 71(2):230–238

    Article  CAS  PubMed  Google Scholar 

  51. 09/07/2019; Available from: https://www.ebi.ac.uk/gwas/.

  52. MacArthur J et al (2017) The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45(D1):D896–D901

    Article  CAS  PubMed  Google Scholar 

  53. Raby BA. (2019) Asthma severity, nature or nurture: genetic determinants. Curr Opin Pediatr 31(3):340-348.

  54. Das S, Miller M, Broide DH (2017) Chromosome 17q21 genes ORMDL3 and GSDMB in asthma and immune diseases. Adv Immunol 135:1–52

    Article  CAS  PubMed  Google Scholar 

  55. James B, Milstien S, Spiegel S. (2019) ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 144(3):634-640.

  56. Moffatt MF et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473

    Article  CAS  PubMed  Google Scholar 

  57. Caliskan M et al (2013) Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 368(15):1398–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smit LA et al (2010) 17q21 variants modify the association between early respiratory infections and asthma. Eur Respir J 36(1):57–64

    Article  CAS  PubMed  Google Scholar 

  59. Bouzigon E et al (2008) Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359(19):1985–1994

    Article  CAS  PubMed  Google Scholar 

  60. Kelly RS, et al. (2019) The role of the 17q21 genotype in the prevention of early childhood asthma and recurrent wheeze by vitamin D. Eur Respir J 54(4). pii: 1900761. https://doi.org/10.1183/13993003.00761-2019.

  61. Rosa MJ, Lee AG, Wright RJ (2018) Evidence establishing a link between prenatal and early-life stress and asthma development. Curr Opin Allergy Clin Immunol 18(2):148–158

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cohen S, Herbert TB (1996) Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu Rev Psychol 47:113–142

    Article  CAS  PubMed  Google Scholar 

  63. Wright RJ et al (2013) Disrupted prenatal maternal cortisol, maternal obesity, and childhood wheeze. Insights into prenatal programming. Am J Respir Crit Care Med 187(11):1186–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wright RJ et al (2010) Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med 182(1):25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Flanigan C et al (2018) Prenatal maternal psychosocial stress and offspring’s asthma and allergic disease: a systematic review and meta-analysis. Clin Exp Allergy 48(4):403–414

    Article  CAS  PubMed  Google Scholar 

  66. Lee A et al (2018) Prenatal fine particulate exposure and early childhood asthma: effect of maternal stress and fetal sex. J Allergy Clin Immunol 141(5):1880–1886

    Article  CAS  PubMed  Google Scholar 

  67. Gergen PJ et al (2018) Sensitization and exposure to pets: the effect on asthma morbidity in the US population. J Allergy Clin Immunol Pract 6(1):101–107 e2

    Article  PubMed  Google Scholar 

  68. Celedon JC et al (2002) Exposure to cat allergen, maternal history of asthma, and wheezing in first 5 years of life. Lancet 360(9335):781–782

    Article  PubMed  Google Scholar 

  69. Litonjua AA et al (2002) A longitudinal analysis of wheezing in young children: the independent effects of early life exposure to house dust endotoxin, allergens, and pets. J Allergy Clin Immunol 110(5):736–742

    Article  PubMed  Google Scholar 

  70. Kilburn S, Lasserson TJ, McKean M (2003) Pet allergen control measures for allergic asthma in children and adults. Cochrane Database Syst Rev 1:CD002989

    Google Scholar 

  71. Phipatanakul W et al (2000) Mouse allergen. I. The prevalence of mouse allergen in inner-city homes. The National Cooperative Inner-City Asthma Study. J Allergy Clin Immunol 106(6):1070–1074

    Article  CAS  PubMed  Google Scholar 

  72. Phipatanakul W et al (2007) Sensitization to mouse allergen and asthma and asthma morbidity among women in Boston. J Allergy Clin Immunol 120(4):954–956

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rosenstreich DL et al (1997) The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med 336(19):1356–1363

    Article  CAS  PubMed  Google Scholar 

  74. Matsui EC et al (2017) Effect of an integrated pest management intervention on asthma symptoms among mouse-sensitized children and adolescents with asthma: a randomized clinical trial. Jama 317(10):1027–1036

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pomés A, et al. (2019) Cockroach allergen component analysis of children with or without asthma and rhinitis in an inner-city birth cohort. J Allergy Clin Immunol 144(4):935-944.

  76. Ahluwalia SK, Matsui EC (2018) Indoor environmental interventions for furry pet allergens, pest allergens, and mold: looking to the future. J Allergy Clin Immunol Pract 6(1):9–19

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pongracic JA et al (2010) Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. J Allergy Clin Immunol 125(3):593–599

    Article  PubMed  PubMed Central  Google Scholar 

  78. Erbas B et al (2012) The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin Exp Allergy 42(5):799–805

    Article  CAS  PubMed  Google Scholar 

  79. Erbas B et al (2018) Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: a systematic review and meta-analysis. Allergy 73(8):1632–1641

    Article  CAS  PubMed  Google Scholar 

  80. Stoltz DJ et al (2013) Specific patterns of allergic sensitization in early childhood and asthma & rhinitis risk. Clin Exp Allergy 43(2):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Togias A et al (2018) Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol

  82. Institute of Medicine (2002) Unequal treatment: confronting racial and ethnic disparities in health care. National Academy Press, Washington (DC)

    Google Scholar 

  83. Akinbami LJ et al (2014) Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001–2010. J Allergy Clin Immunol 134(3):547–553 e5

    Article  PubMed  PubMed Central  Google Scholar 

  84. Keet CA et al (2015) Neighborhood poverty, urban residence, race/ethnicity, and asthma: rethinking the inner-city asthma epidemic. J Allergy Clin Immunol 135(3):655–662

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hughes HK et al (2017) Pediatric asthma health disparities: race, hardship, housing, and asthma in a national survey. Acad Pediatr 17(2):127–134

    Article  PubMed  Google Scholar 

  86. Guilbert T,et al. (2018) Racial Disparities in Asthma-Related Health Outcomes in Children with Severe/Difficult-to-Treat Asthma. J Allergy Clin Immunol Pract 7(2):568-577.

  87. Wen C et al (2019) Pediatric asthma among small racial/ethnic minority groups: an analysis of the 2006–2015 National Health Interview Survey. Public Health Rep 134(4):338–343

    Article  PubMed  PubMed Central  Google Scholar 

  88. Matsui EC, Adamson AS, Peng RD (2019) Time’s up to adopt a biopsychosocial model to address racial and ethnic disparities in asthma outcomes. J Allergy Clin Immunol 143(6):2024–2025

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto A. Litonjua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Asthma: Novel developments from bench to bedside - Guest Editor: Bianca Schaub

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, J., Pier, J. & Litonjua, A.A. Asthma epidemiology and risk factors. Semin Immunopathol 42, 5–15 (2020). https://doi.org/10.1007/s00281-020-00785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-020-00785-1

Navigation