Skip to main content
Log in

Finite Element Modeling of the Phase Change in Thermally-Grown SiO2 in SiC Systems for Gas Turbines

  • Environmental Degradation of High Temperature Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The operating lifetimes of SiC-based components in combustion environments are directly linked to the adhesion of the protective environmental barrier coating (EBC) layer. One of the major known failure modes for EBCs is the formation of a thick SiO2 thermally grown oxide (TGO), which decreases coating adhesion and encourages eventual coating spallation. The effect of the TGO thickness under Yb2Si2O7 EBCs on silicon carbide was investigated using finite element models (FEMs) with various interfacial architectures and SiO2 TGO thicknesses. The FEMs incorporated a user-defined material to simulate the volume contraction of the TGO during the silica phase transformation from β-cristobalite to α-cristobalite upon cooling from the stress-free state at 1350°C to room temperature. Systems with and without a silicon bond coating intermediary layer were assessed. It was shown that the TGO phase transformation stress (1.6–1.7 GPa) dominated the increase in stress in the TGO and EBC layers. Furthermore, it was found that stress increase in the TGO was independent of TGO thickness and interface geometry. These results indicate that stabilization of the TGO to mitigate the phase transformation could dramatically improve the performance of SiC-base components with EBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Gardiner, CompositesWorld (2017).

  2. R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagrams. 5, 486 https://doi.org/10.1007/BF02872902 (1984).

    Article  Google Scholar 

  3. S. Zhu, M. Mizuno, Y. Kagawa, and Y. Mutoh, Compos. Sci. Technol. 59, 833 https://doi.org/10.1016/S0266-3538(99)00014-7 (1999).

    Article  Google Scholar 

  4. D. Tejero-Martin, C. Bennett, and T. Hussain, J. Eur. Ceram. Soc. 41, 1747 https://doi.org/10.1016/j.jeurceramsoc.2020.10.057 (2021).

    Article  Google Scholar 

  5. K. Suzuki, Y. Matsumura, K. Takata, S. Hada, M. Yuri, J. Masada, Evolution of mhps large frame gas turbines: J to air-cooled JAC. In Turbo Expo: Power for Land, Sea, and Air (American Society of Mechanical Engineers, 2018), Vol. 51043, p. V003T08A009 https://doi.org/10.1115/GT2018-77273

  6. K. Kane, E. Garcia, P. Stack, M. Lance, C. Parker, S. Sampath, and B.A. Pint, J. Am. Ceram. Soc. 105, 590 https://doi.org/10.1111/jace.18093 (2022).

    Article  Google Scholar 

  7. E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson, J. Am. Ceram. Soc. 82, 1826 https://doi.org/10.1111/j.1151-2916.1999.tb02005.x (1999).

    Article  Google Scholar 

  8. E.J. Opila R.C. Robinson, and M.J. Verrilli, Int. J. Appl. Ceram. Technol. 13, 434 https://doi.org/10.1111/ijac.12499 (2016).

    Article  Google Scholar 

  9. E.J. Opila and R.E. Hann, J. Am. Ceram. Soc. 80, 197 https://doi.org/10.1111/j.1151-2916.1997.tb02810.x (1997).

    Article  Google Scholar 

  10. M. Ridley and E. Opila, J. Eur. Ceram. Soc. 41, 3141 https://doi.org/10.1016/j.jeurceramsoc.2020.05.071 (2021).

    Article  Google Scholar 

  11. M. Ridley and E. Opila, J. Am. Ceram. Soc. 105, 1330 https://doi.org/10.1111/jace.18120 (2022).

    Article  Google Scholar 

  12. J. Liu, L. Zhang, Q. Liu, L. Cheng, and Y. Wang, J. Eur. Ceram. Soc. 33, 3419 https://doi.org/10.1016/j.jeurceramsoc.2013.05.030 (2013).

    Article  Google Scholar 

  13. J.L. Stokes, B.J. Harder, V.L. Wiesner, and D.E. Wolfe, J. Eur. Ceram. Soc. 39, 5059 https://doi.org/10.1016/j.jeurceramsoc.2019.06.051 (2019).

    Article  Google Scholar 

  14. K. Kane, E. Garcia, M. Lance, C. Parker, S. Sampath, and B. Pint, J. Am. Ceram. Soc. 105, 2754 https://doi.org/10.1111/jace.18231 (2022).

    Article  Google Scholar 

  15. D.E. Damby, E.W. Llewellin, C.J. Horwell, B.J. Williamson, J. Najorka, G. Cressey, and M. Carpenter, J. Appl. Crystallogr. 47, 1205 https://doi.org/10.1107/S160057671401070X (2014).

    Article  Google Scholar 

  16. A.J. Leadbetter and A.F. Wright, Philos. Mag. 33, 105 https://doi.org/10.1080/14786437608221095 (1976).

    Article  Google Scholar 

  17. M.J. Lance, M.J. Ridley, K.A. Kane, and B.A. Pint, J. Am. Ceram. Soc. https://doi.org/10.1111/jace.19190 (2023).

    Article  Google Scholar 

  18. A. Abdelgawad and K. Al-Athel, Ceram. Int. 47, 20064 https://doi.org/10.1016/j.ceramint.2021.03.336 (2021).

    Article  Google Scholar 

  19. A. Abdul-Aziz, F. Abdi, R.T. Bhatt, and J.E. Grady, J. Ceram. 2014, 1 https://doi.org/10.1155/2014/874034 (2014).

    Article  Google Scholar 

  20. A. Abdul-Aziz, R.T. Bhatt, J.E. Grady, D. Zhu, Environmental Barrier Coating (EBC) Durability Modeling: An Overview and Preliminary Analysis, in: IV (2012) pp. 313–323. https://doi.org/10.1002/9781118491867.ch32.

  21. B. Lv, X. Jin, J. Cao, B. Xu, Y. Wang, and D. Fang, J. Eur. Ceram. Soc. 40, 3363 https://doi.org/10.1016/j.jeurceramsoc.2020.03.036 (2020).

    Article  Google Scholar 

  22. N. Al Nasiri, N. Patra, M. Pezoldt, J. Colas, and W.E. Lee, J. Eur. Ceram. Soc. 39, 2703 https://doi.org/10.1016/j.jeurceramsoc.2018.12.019 (2019).

    Article  Google Scholar 

  23. K.A. Kane, E. Garcia, S. Uwanyuze, M. Lance, K.A. Unocic, S. Sampath, and B.A. Pint, J. Am. Ceram. Soc. 104, 2285 https://doi.org/10.1111/jace.17650 (2021).

    Article  Google Scholar 

  24. B.J. Harder, M.J. Presby, J.A. Salem, S.M. Arnold, and S.K. Mital, J. Eng. Gas Turbines Power 143, 1 https://doi.org/10.1115/1.4049414 (2021).

    Article  Google Scholar 

  25. B. Lv, Z. Qu, B. Xu, Y. Wang, and D. Fang, Ceram. Int. 47, 16547 https://doi.org/10.1016/j.ceramint.2021.02.225 (2021).

    Article  Google Scholar 

  26. C.M. Heveran, J.P. Xu, V.K. Sarin, and S.N. Basu, Surf. Coat. Technol. 235, 354 https://doi.org/10.1016/j.surfcoat.2013.07.066 (2013).

    Article  Google Scholar 

  27. B.T. Richards, S. Sehr, F. De Franqueville, M.R. Begley, and H.N.G. Wadley, Acta Mater. 103, 448 https://doi.org/10.1016/j.actamat.2015.10.019 (2016).

    Article  Google Scholar 

  28. W.D. Summers, M.R. Begley, and F.W. Zok, Surf. Coat. Technol. 378, 125083 https://doi.org/10.1016/j.surfcoat.2019.125083 (2019).

    Article  Google Scholar 

  29. J. Du, G. Yu, Y. Jia, C. Liu, Z. Sui, X. Gao, F. Wang, and Y. Song, Ceram. Int. 49, 5748 https://doi.org/10.1016/j.ceramint.2022.10.108 (2023).

    Article  Google Scholar 

  30. L. Lin, T.G. Aguirre, M.J. Ridley, B.A. Pint, Collaborating Volume Contraction in Phase Change with User Subroutine Development in Abaqus. (Manuscript in progress, 2023).

  31. S.M. Tawfik, M.N.A. Nasr, and H.A. El Gamal, Alex. Eng. J. 58, 67 https://doi.org/10.1016/j.aej.2018.12.010 (2019).

    Article  Google Scholar 

  32. B.A. Pint, P. Stack, K.A. Kane, Predicting EBC Temperature Limits for Industrial Gas Turbines, In Proceedings ASME Turbo Expo. 6 (2021). https://doi.org/10.1115/GT2021-59408.

  33. I.P. Swainson, and M.T. Dove, Phys. Chem. Miner. 22, 61 https://doi.org/10.1007/BF00202681 (1995).

    Article  Google Scholar 

  34. R.G. Muron, Elastic Moduli Data for Polycrystalline Ceramics, NISTIR 685 (2002). https://srdata.nist.gov/CeramicDataPortal/Elasticity/SiO2

  35. B.T. Richards, Ytterbium Silicate Environmental Barrier Coatings (University of Virginia, 2015).

    Book  Google Scholar 

  36. D.Β Peacor, Zeitschrift Für Krist. - Cryst. Mater. 138, 274 https://doi.org/10.1524/zkri.1973.138.jg.274 (1973).

    Article  Google Scholar 

  37. Z. Sun, Y. Zhou, J. Wang, and M. Li, J. Am. Ceram. Soc. 90, 2535 https://doi.org/10.1111/j.1551-2916.2007.01803.x (2007).

    Article  Google Scholar 

  38. J. Wang, Z. Tian, L. Zheng, J. Wang, J. Yang, and G. Yang, J. Am. Ceram. Soc. 98, 2843 https://doi.org/10.1111/jace.13702 (2015).

    Article  Google Scholar 

  39. M.H. Lu, H.M. Xiang, Z.H. Feng, X.Y. Wang, and Y.C. Zhou, J. Am. Ceram. Soc. 99, 1404 https://doi.org/10.1111/jace.14085 (2016).

    Article  Google Scholar 

  40. Z. Li and R.C. Bradt, J. Mater. Sci. 22, 2557 https://doi.org/10.1007/BF01082145 (1987).

    Article  Google Scholar 

  41. F. Stolzenburg, J. Almer, K.N. Lee, B.J. Harder, and K.T. Faber, Adv. X-Ray Anal. 55, 107 (2009).

    Google Scholar 

  42. Z. Liu, A.P. Source, Temperature-Dependent Elastic Constants and Young’s Modulus fo Silicon Single Crystal, In: Proceedings of MEDSI2020. (2021) pp. 324–326. https://doi.org/10.18429/JACoW-MEDSI2020-WEPC07.

  43. R. Hull, Properties of Crystalline Silicon (INSPEC The Institution of Electrical Engineers, UK, 1999).

    Google Scholar 

  44. B.J. Harder, M.J. Presby, J.A. Salem, and S.M. Arnold, Environ. Barrier Coat. Oxidat. Adhes. Strength 143, 1–6 https://doi.org/10.1115/1.4049414 (2021).

    Article  Google Scholar 

  45. L.B. Freund and S. Suresh, Thin Film Mater. https://doi.org/10.1017/CBO9780511754715 (2004).

    Article  Google Scholar 

  46. H. Ni, X. Li, and H. Gao, Appl. Phys. Lett. 88, 043108 https://doi.org/10.1063/1.2165275 (2006).

    Article  Google Scholar 

  47. F.P. Beer, E.R. Johnston Jr., J.T. DeWolf, and D.F. Mazurek, Mechanics of Materials, 6th edn. (McGraw-Hill Publishing, New York, 2012).

    Google Scholar 

  48. N. Rohbeck, P. Morrell, and P. Xiao, J. Eur. Ceram. Soc. 39, 3153 https://doi.org/10.1016/j.jeurceramsoc.2019.04.034 (2019).

    Article  Google Scholar 

  49. B.T. Richards, K.A. Young, F. De Francqueville, S. Sehr, M.R. Begley, and H.N.G. Wadley, Acta Mater. 106, 1 https://doi.org/10.1016/j.actamat.2015.12.053 (2016).

    Article  Google Scholar 

  50. K.N. Lee, J. Am. Ceram. Soc. 102, 1507 https://doi.org/10.1111/jace.15978 (2019).

    Article  Google Scholar 

  51. M. Ridley, K. Kane, M. Lance, C. Parker, Y.F. Su, S. Sampath, E. Garcia, M. Sweet, M. O’Connor, and B. Pint, J. Am. Ceram. Soc. 106, 613 https://doi.org/10.1111/jace.18769 (2023).

    Article  Google Scholar 

  52. E. Bakan and R. Vaßen, J. Eur. Ceram. Soc. 42, 5122 https://doi.org/10.1016/j.jeurceramsoc.2022.05.003 (2022).

    Article  Google Scholar 

  53. E.J. Opila, J. Am. Ceram. Soc. 82, 625 https://doi.org/10.1111/j.1151-2916.1999.tb01810.x (2004).

    Article  Google Scholar 

  54. R.G. Munro, J. Phys. Chem. Ref. Data 26, 1195 https://doi.org/10.1063/1.556000 (1997).

    Article  Google Scholar 

  55. L. Zhou and H.M. Qu, Chin. Phys. C 39, 096001 https://doi.org/10.1088/1674-1137/39/9/096001 (2015).

    Article  Google Scholar 

  56. H. Dong, G.J. Yang, C.X. Li, X.T. Luo, and C.J. Li, J. Am. Ceram. Soc. 97, 1226 https://doi.org/10.1111/jace.12868 (2014).

    Article  Google Scholar 

  57. M. Okazaki, S. Yamagishi, Y. Yamazaki, K. Ogawa, H. Waki, and M. Arai, Int. J. Fatigue 53, 33 https://doi.org/10.1016/j.ijfatigue.2012.02.014 (2013).

    Article  Google Scholar 

  58. S.A. Sadeghi-Fadaki, K. Zangeneh-Madar, and Z. Valefi, Surf. Coat. Technol. 204, 2136 https://doi.org/10.1016/j.surfcoat.2009.11.035 (2010).

    Article  Google Scholar 

  59. C.R.C. Lima and J.M. Guilemany, Surf. Coat. Technol. 201, 4694 https://doi.org/10.1016/j.surfcoat.2006.10.005 (2007).

    Article  Google Scholar 

  60. N. Markocsan, P. Nylén, J. Wigren, X.H. Li, and A. Tricoire, J. Therm. Spray Technol. 18, 201 https://doi.org/10.1007/s11666-009-9313-6 (2009).

    Article  Google Scholar 

  61. R. Eriksson, H. Brodin, S. Johansson, L. Östergren, and X.H. Li, Surf. Coat. Technol. 205, 5422 https://doi.org/10.1016/j.surfcoat.2011.06.007 (2011).

    Article  Google Scholar 

Download references

Funding

This work was funded by the Advanced Turbine Program, Office of Fossil Energy, Department of Energy. The authors thank Dr. Seokpum (Pum) Kim from ORNL for allowing use of his Abaqus licenses for this work. The authors also thank Dr. Mohammed Alnaggar for technical review at ORNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G. Aguirre.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, T.G., Lin, L., Ridley, M.J. et al. Finite Element Modeling of the Phase Change in Thermally-Grown SiO2 in SiC Systems for Gas Turbines. JOM (2024). https://doi.org/10.1007/s11837-024-06507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06507-4

Navigation