Skip to main content
Log in

The single-crystal elastic constants of cubic (3C) SiC to 1000° C

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimental measurements of the polycrystalline elastic moduli of the cubic (3C) beta polytype of SiC at elevated temperatures and the room-temperature single-crystal elastic constants were combined through equations that relate the two to determine the stiffnesses Cij and the compliances Sij to 1000° C. The results demonstrate a general method for estimating the elevated temperature single-crystal constants of cubic crystals and illustrate that the cubic (3C) beta polytype of SiC becomes more elastically anisotropic at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Armstrong andN. R. Borch,Met. Trans 2 (1971) 3037.

    Google Scholar 

  2. C. N. Reid “Deformation Geometry for Materials Scientists” (Pergamon, Oxford, 1973) p. 65.

    Google Scholar 

  3. J. Jortner (ed.), “Thermomechanical Behaviour of High Temperature Composites”, (ASME, New York, 1982).

    Google Scholar 

  4. G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook”, 2nd Edn (MIT Press, Cambridge, 1971).

    Google Scholar 

  5. C. Suess,J. Rech. CNRS 54 (1961) 23.

    Google Scholar 

  6. L. M. Belyaev, “Ruby and Sapphire”, (Nauka, Moscow, 1974) p. 8.

    Google Scholar 

  7. R. J. Arsenault,Mater. Sci. Eng. 64 (1984) 171.

    Google Scholar 

  8. P. F. Becher andG. C. Wei,J. Amer. Ceram. Soc. 67 (1984) C267.

    Google Scholar 

  9. J. F. Nye, “Physical Properties of Crystals”, (Clarendon, Oxford, 1969) p. 147.

    Google Scholar 

  10. K. B. Tolpygo,Sov. Phys. - Solid State 2 (1961) 2367.

    Google Scholar 

  11. T. Mura, “Micromechanics of Defects in Solids” (Nijhoff, The Hague, 1982) p. 364.

    Google Scholar 

  12. I. C. Noyan,Mater. Sci. Eng. 75 (1985) 95.

    Google Scholar 

  13. J. B. Wachtman Jr, in Proceedings of Symposium on Mechanical and Thermal Properties of Ceramics, Gaithersburg, Maryland, April, 1968, National Bureau of Standards Technical Publication 303 (1969). 14.|H. C. Chandan, PhD dissertation, Pennsylvania State University (1980).

  14. C. H. McMurtry, M. R. Kasprzyk andR. G. Naum, in “Silicon Carbide - 1973”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, 1974) p. 359.

    Google Scholar 

  15. P. T. B. Schaffer andC. K. Jun,Mater. Res. Bull. 7 (1972) 63.

    Google Scholar 

  16. K. D. McHenry andR. E. Tressler,J. Amer. Ceram. Soc. 63 (1980) 152.

    Google Scholar 

  17. D. H. Chung andW. R. Buessem, in “Anisotropy in Single Crystal Refactory Compounds”, edited by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968) p. 217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Bradt, R.C. The single-crystal elastic constants of cubic (3C) SiC to 1000° C. J Mater Sci 22, 2557–2559 (1987). https://doi.org/10.1007/BF01082145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082145

Keywords

Navigation