Skip to main content
Log in

Phase Evolution and Recovery Rate of Sb in Lead–Silver Slag Treated via Melting–Fuming Method

  • Pyrometallurgical Techniques Towards Emissions Reductions
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Large amounts of lead–silver slag and a low recycling rate cause environmental pollution and the waste of metal resources. In this paper, a melting–fuming method is used to treat lead–silver slag. Thermodynamic analysis, the melting–fuming procedure, and response surface optimization were performed to investigate the phase evolution of the antimony element. The influence of reaction temperature, carbon ratio, and holding time on antimony recovery is also investigated. The results show that Sb2O3 and Sb2O4 are the main phases containing Sb in the dust. With the increase of the reaction temperature and the holding time, the recovery rate of antimony gradually increases and reaches 80.19% and 81.97% at 1250°C and 120 min, respectively; The recovery of antimony first increases and then decreases with the increase of the carbon ratio and reaches the highest value at 16.30%; The recovery rate of antimony reaches 82.54% in the optimal conditions of a reaction temperature of 1290°C, a carbon ratio of 17.60%, and a holding time of 125 min. This paper provides theoretical guidance for the recovery and reuse of antimony from lead–silver slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Ren, K. Li, S. Zhang, X. Cui, and I.O.P. Conf, Ser. Earth Environ. Sci. 371, 042029 (2019).

    Google Scholar 

  2. Y. Wang, Y. Yuan, G. Wen, and R. Wang, Trans. Indian Inst. Met. 74, 3013 (2021).

    Article  Google Scholar 

  3. X. Dai, X. Wang, H. Zhang, K. Xie, P. Zeng, and C. Ding, China Nonferrous Metall. 40, 49 (2011).

    Google Scholar 

  4. Y. Li, J. Li, Y. Li, Y. Niu, X. Yao, Y. Chen, and X. Lu, Hydrometall. China 39, 186 (2020).

    Google Scholar 

  5. J. Comel, E. Meux, N. Leclerc, S. Diliberto, P. Pierrat, and H. Muhr, JOM 73, 1652 (2021).

    Article  Google Scholar 

  6. Z. Deng, Y. Zheng, X. Li, C. Wei, M. Li, C. Li, and G. Fan, Int. J. Chem. React. Eng. 18, 243 (2020).

    Google Scholar 

  7. Z. Deng, X. Li, C. Wei, G. Fan, M. Li, and C. Li, JOM 73, 721 (2021).

    Article  Google Scholar 

  8. L. Li, F. Wang, D. Zhong, C. Tan, and Y. Yu, ISIJ Int. 57, 581 (2017).

    Article  Google Scholar 

  9. F. Xi, S. Li, W. Ma, Z. Chen, K. Wei, and J. Wu, Hydrometallurgy 201, 105553 (2021).

    Article  Google Scholar 

  10. A. Rüşen and M.A. Topçu, Chem. Pap. 72, 2879 (2018).

    Article  Google Scholar 

  11. Q.G. Reynolds and M.A. Rhamdhani, JOM 73, 2658 (2021).

    Article  Google Scholar 

  12. J. Li and H. Ma, Green Process. Synth. 7, 552 (2018).

    Article  Google Scholar 

  13. M. Hu, B. Peng, L. Chai, Y. Li, N. Peng, Y. Yuan, and D. Chen, JOM 67, 2005 (2015).

    Article  Google Scholar 

  14. M. Rämä, S. Nurmi, A. Jokilaakso, L. Klemettinen, P. Taskinen, and J. Salminen, Metals 8, 744 (2018).

    Article  Google Scholar 

  15. X. Cao, L. Hong, Y. Qi, H. Zhou, and Y. Guo, Nonferrous Met. Extr. Metall. 68, 4 (2016).

    Google Scholar 

  16. R. Jiang, L. Chai, Z. Jia, and Q. Wang, Yunnan Metall. 43, 58 (2014).

    Google Scholar 

  17. W. Wang, S. Wang, J. Yang, C. Cao, K. Hou, L. Xia, J. Zhang, B. Xu, and B. Yang, Minerals 12, 264 (2022).

    Article  Google Scholar 

  18. W. Liu, K. Zhang, D. Zhang, L. Chen, L. Liu, and T. Yang, JOM 71, 3688 (2019).

    Article  Google Scholar 

  19. A. Beutl, D. Henriques, V. Motalov, D. Cupid, T. Markus, and H. Flandorfer, J. Therm. Anal. Calorim. 131, 2673 (2018).

    Article  Google Scholar 

  20. S. Brink, R. Kleijn, B. Sprecher, N. Mancheri, and A. Tukker, Resour. Conserv. Recycl. 186, 106586 (2022).

    Article  Google Scholar 

  21. F. Martinsa and H. Castrob, Procedia CIRP 84, 1059 (2019).

    Article  Google Scholar 

  22. C. Tan, H. Li, J. Li, and L. Li, ISIJ Int. 59, 2113 (2019).

    Article  Google Scholar 

  23. V.R.C. Thanu and M. Jayakumar, Sep. Purif. Technol. 235, 116169 (2020).

    Article  Google Scholar 

  24. J. Han, Z. Ou, W. Liu, F. Jiao, and W. Qin, Sep. Purif. Technol. 242, 116789 (2020).

    Article  Google Scholar 

  25. J. Xue, D. Long, H. Zhong, S. Wang, and L. Liu, J. Hazard. Mater. 413, 125365 (2021).

    Article  Google Scholar 

  26. D. Dupont, S. Arnout, P.T. Jones, and K. Binnemans, J. Sustain. Metall. 2, 79 (2016).

    Article  Google Scholar 

  27. H. Ling, A. Malfliet, B. Blanpain, and M. Guo, Miner. Process. Extr. Metall. Rev. 5, 63 (2022).

    Google Scholar 

  28. Z. Cheng, A. Khaliq, B. Blanpain, and M. Guo, Metall. Mater. Trans. B 53, 1308 (2022).

    Article  Google Scholar 

  29. G. Khartcyzov, D. Shishin, M. Ek, and E. Jak, JOM 75, 2003 (2023).

    Article  Google Scholar 

  30. Y. Wang, S. Nagraj, J. Heo, M. Chintinne, M. Guo, and S. Huang, Ceram. Int. 49, 22004 (2023).

    Article  Google Scholar 

  31. L. Tao, L.L. Wang, Y.J. Zhou, N.M. Hu, J. Cai, X.Y. Chen, X.Q. Wang, and P. Ning, Environ. Sci. Pollut. Res. 28, 48417 (2021).

    Article  Google Scholar 

  32. L. Tang, C. Tang, J. Xiao, P. Zeng, and M. Tang, J. Clean. Prod. 201, 764 (2018).

    Article  Google Scholar 

  33. A. Regti, M.R. Laamari, S.-E. Stiriba, and M.E. Haddad, Microchem. J. 130, 129 (2017).

    Article  Google Scholar 

  34. Z. Yi, Q. Liu, and J. Qin, Trans. Indian Inst. Met. 74, 3085 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Science and Technology Major Project Plan of Gansu Province Grant Nos. (19ZD2GD001), the National Natural Science Foundation of China Grant Nos. (52164034, and U22A20175) and Jinchang Science and Technology Plan-Youth Talent Fund Grant Nos. (2022JC00019).

Funding

Science and Technology Major Project Plan of Gansu Province (19ZD2GD001), National Natural Science Foundation of China (52164034, U22A20175) and Jinchang Science and Technology Plan-Youth Talent Fund (2022JC00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 87 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, T., Zhou, S. et al. Phase Evolution and Recovery Rate of Sb in Lead–Silver Slag Treated via Melting–Fuming Method. JOM 75, 5709–5717 (2023). https://doi.org/10.1007/s11837-023-06204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06204-8

Navigation