Skip to main content
Log in

Use of Phytic Acid for the Removal of Iron in Hot Acidic Leachate from Zinc Hydrometallurgy

  • Advances in Process Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In zinc hydrometallurgy, hot-acidic leaching of calcines leads to Fe/Zn solutions in sulfuric acid medium. Three distinct processes have been previously developed to remove iron: jarosite, goethite and hematite. Each process displays their own drawbacks: important loss of zinc (jarosite, goethite), significant environmental impact of residue (jarosite) or economic cost (hematite). The work reported herein investigated the possibility of using phytic acid, a compound extractable from cereals, to remove iron. Precipitation was studied first at the laboratory-scale using DOE methodology and then with a laboratory pilot. At pH = 2.1, we showed that it is possible to remove up to 99.5% of iron with a loss of zinc equal to 0.6% and a residual concentration of FeIII of 130 mg L−1. Even if the amount of residue is more important than in the jarosite process, leaching tests showed that iron phytate could be stored in less drastic conditions than jarosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Arslan, and F. Arslan, Turkish J. Eng. Environ. Sci. 27(1), 45 (2003).

    Google Scholar 

  2. G.P. Demopoulos, Short course on hydrometallurgy (Liege, Belgium, 2017).

    Google Scholar 

  3. A.J. Monhemius, CIM Journal 8, 197 (2017).

    Article  Google Scholar 

  4. A. Pappu, M. Saxena, and S.R. Asolekar, Sci. Total Environ. 359, 232 (2006).

    Article  Google Scholar 

  5. P.T. Davey, and T.R. Scott, Hydrometallurgy 2, 25 (1976).

    Article  Google Scholar 

  6. C. Fleuriault, Colorado School of Mines, Gold, United States of America, Thesis (2016)

  7. M.R.C. Ismael, and J.M.R. Carvalho, Min. Eng. 16, 31 (2003).

    Article  Google Scholar 

  8. G.P. Demopoulos, R. Molnar, L. Rosato, Iron Control and Disposal, 395 (1996).

  9. T. Sato, T. Nakamura, and M. Ikeno, Hydrometallurgy 15, 209 (1985).

    Article  Google Scholar 

  10. M.R.C Ismael, University of Lisbon, Lisbon, Portugal, Thesis (1999).

  11. M. Ehle, K. Oppenlander, Patent US5795482A (1998).

  12. F.J. Alguacil, S. Amer, and A. Luis, Hydrometallurgy 18, 65 (1987).

    Article  Google Scholar 

  13. G. Thorsen, H.F. Svendsen, A. Grislingås, Hydrometallurgical Process Fundamentals, ed. R.G. Bautista (Boston US: Springer, 1984), p. 269.

  14. Y. Xie, S. Xie, X. Chen, W. Gui, C. Yang, and L. Caccetta, Hydrometallurgy 151, 62 (2015).

    Article  Google Scholar 

  15. J. Han, C. Yang, X. Zhou, and W. Gui, Hydrometallurgy 173, 134 (2017).

    Article  Google Scholar 

  16. H. Han, W. Sun, Y. Hu, and H. Tang, Hydrometallurgy 147, 120 (2014).

    Article  Google Scholar 

  17. E. Graf, Journal of the American Oil Chemists’ Society 60, 1861 (1983).

    Article  Google Scholar 

  18. G.T. Tsao, Y. Zheng, J. Lu, C.S Gong, Appl Biochem Biotechnol, 63, 731 (1997).

  19. E. Vasca, S. Materazzi, T. Caruso, O. Milano, C. Fontanella, and C. Manfredi, Anal. Bioanal. Chem. 374, 173 (2002).

    Article  Google Scholar 

  20. S. Mauchauffée, and E. Meux, Chemosphere 69, 763 (2007).

    Article  Google Scholar 

  21. F.T. Principe, and G.P. Demopoulos, JOM. 51, 34 (1999).

    Article  Google Scholar 

  22. F.T. Principe, and G.P. Demopoulos, Hydrometallurgy 79, 97 (2005).

    Article  Google Scholar 

  23. A.J. Van Der Zeeuw, Hydrometallurgy 2, 275 (1977).

    Article  Google Scholar 

  24. M.G. Kershaw, Hydrometallurgy 39, 129 (1995).

    Article  Google Scholar 

  25. D.J.W. Grant, John Wiley & Sons, (1990).

  26. R.A. Fisher, The Design of Experiments, 7th edn. (London and Edinburgh, Oliver and Boyd, 1960).

    Google Scholar 

  27. D.J. Finney, Ann. Eugen. 12, 291 (1943).

    Article  Google Scholar 

  28. J. Goupy, Methods for experimental design, volume 12, principles and applications for phycists and chemists. 1st ed (Paris, Elsevier, 1993).

  29. Ministère de la transition écologique, Code de l'environnement, Annexe II de l'article R541-8 (2016).

  30. P. Kangas, P. Koukkari1, B.P. Wilson, M. Lundström, J. Rastas, P. Saikkonen, J. Leppinen, V. Hintikka, Luleå, Paper Presented at Conference in Minerals Engineering, 2017.

  31. AFNOR, EN 12457-2, NFX30-402-2 (2002).

  32. Y. Lourié. Aide-mémoire de chimie analytique, ed Mir. (Moscou, Mir, 1975).

  33. J. Torres, S. Domínguez, M.F. Cerdá, G. Obal, A. Mederos, R.F. Irvine, et al., J. Inorg. Biochem. 99, 828 (2005).

    Article  Google Scholar 

  34. G. Marolt, and B. Pihlar, Acta Chim. Slov. 62, 319 (2015).

    Article  Google Scholar 

  35. Hyperquad simulation and speciation, 2020, Hyss, http://www.hyperquad.co.uk/hyss.htm 2020.

  36. Origin, 2020, origin 9.0, https://www.origin.com/fra/fr-fr/store/download.

  37. S. Çoruh, and O.N. Ergun, J. Hazard. Mater. 173, 468 (2010).

    Article  Google Scholar 

  38. M. Kerolli-Mustafa, Chem. Biochem. Eng. Q. 31, 403 (2017).

    Article  Google Scholar 

  39. M. Kerolli-Mustafa, L. Ćurković, H. Fajković, and S. Rončević, Croat. Chem. Acta 88, 189 (2015).

    Article  Google Scholar 

  40. X. Min, X. Xie, L. Chai, Y. Liang, M. Li, and Y. Ke, Transactions of Nonferrous Metals Society of China 23, 208 (2013).

    Article  Google Scholar 

  41. R. Wang, Q. Yan, P. Su, J. Shu, M. Chen, Z. Xiao, Y. Han, and Z. Cheng, Process Saf. Environ. Prot. 144, 366 (2020).

    Article  Google Scholar 

  42. Ministère de la transition écologique, arrêté du 30/12/02 relatif au stockage de déchets dangereux (2002).

Download references

Acknowledgements

Some facilities used in the work have been funded through the SusChemProc project, with the joint French Ministry of Research and Region Lorraine CPER program (2015–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Meux.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comel, J., Meux, E., Leclerc, N. et al. Use of Phytic Acid for the Removal of Iron in Hot Acidic Leachate from Zinc Hydrometallurgy. JOM 73, 1652–1660 (2021). https://doi.org/10.1007/s11837-021-04640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04640-y

Navigation