Skip to main content
Log in

A thermodynamic investigation of the Li–Sb system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Many standard thermodynamic data in the binary system Li–Sb can be found in literature; however, they are often derived from electrochemical measurements taken at higher temperatures. The uncertainties associated with the extrapolation of these high-temperature data to room temperature are, however, inherently large. Therefore, a comprehensive investigation of the thermodynamic properties in the Li–Sb system was conducted in this work to generate more reliable data. Four different experimental techniques were used for the investigations. The heat capacities for both binary compounds, Li2Sb and Li3Sb, were measured for the very first time. In addition, the enthalpies of formation for both compounds were determined by drop solution and direct reaction calorimetry. Furthermore, Knudsen effusion mass spectrometry was performed to measure partial enthalpies and activities of Sb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kubaschewski O, Seith W. Bildungswärmen von Nichteisenmetall-Legierungen. Z Metallkd. 1938;30:7–9.

    CAS  Google Scholar 

  2. LeBeau MP. Sur l’antimonuire de lithium et sur la preparation de quelques alliages de ce metal. C R Hebd Seances Acad Sci. 1902;134:231–3.

    Google Scholar 

  3. Kubaschewski O, Caterall JA. Thermochemical data of alloys. London: Pergamon Press; 1956.

    Google Scholar 

  4. Shchukarev SA, Vol’f E, Morozova MP. The enthalpy of formation of lithium antimonide. Zh Obshch Khim. 1954;24:1925–6.

    CAS  Google Scholar 

  5. Weppner W, Huggins RA. Thermodynamic properties of the intermetallic systems lithium–antimony and lithium–bismuth. J Electrochem Soc. 1978;125:7–14.

    Article  CAS  Google Scholar 

  6. Nikitin AV, Demidov AI, Morachevskii AG. Study of alloy formation in the cathodic polarization of antimony in molten salts. J Appl Chem-USSR. 1980;53:1641–4.

    CAS  Google Scholar 

  7. Nikitin AV, Demidov AI, Morachevskii AG, Matveev VA, Il’ina OI. Thermodynamics of lithium-antimony system solid alloys. J Appl Chem-USSR. 1982;55:915–6.

    CAS  Google Scholar 

  8. Demidov AI, Dukhanin GP, Morachevskii AG. Alloy formation during the deposition of lithium on antimony and bismuth cathodes. Elektrokhimiya. 1983;19:1695–9.

    CAS  Google Scholar 

  9. Kane MM, Newhouse JM, Sadoway DR. Electrochemical determination of the thermodynamic properties of lithium–antimony alloys. J Electrochem Soc. 2015;162:A421–5.

    Article  CAS  Google Scholar 

  10. Terlicka S, Dębski A, Fima P. Enthalpy of formation of Li2Sb and Li3Sb and mixing enthalpy of liquid Li–Sb alloys. J Alloys Compd. 2016;673:272–7.

    Article  CAS  Google Scholar 

  11. Li D, Beutl A, Flandorfer H, Cupid DM. The Li–Sb phase diagram part II: calorimetry and thermodynamic assessment. J Alloys Compd. 2017;701:186–99.

    Article  CAS  Google Scholar 

  12. Jackson ED, Mosby JM, Prieto AL. Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition. Electrochim Acta. 2016;214:253–64.

    Article  CAS  Google Scholar 

  13. Haomiao L, Kangli W, Shijie C, Kai J. High performance liquid metal battery with environmentally friendly antimony–tin positive electrode. ACS Appl Mater Interfaces. 2016;8:12830–5.

    Article  Google Scholar 

  14. Beutl A, Cupid D, Flandorfer H. The Li–Sb phase diagram part I: new experimental results. J Alloys Compd. 2017;695:1052–60.

    Article  CAS  Google Scholar 

  15. Della-Gatta G, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry—part 2. Calibration standards for differential scanning calorimetry—(IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.

    Article  CAS  Google Scholar 

  16. Flandorfer H, Gehringer F, Hayer E. Individual solutions for control and data acquisition with the PC. Thermochim Acta. 2002;382:77–87.

    Article  CAS  Google Scholar 

  17. Henriques D, Motalov V, Bencze L, Fürtauer S, Markus T. Experimental thermodynamics of the Li–Sn system by Knudsen effusion mass spectrometry. J Alloys Compd. 2014;585:299–306.

    Article  CAS  Google Scholar 

  18. Hilpert K, Ruthardt K. Determination of the dissociation energy of the diatomic chromium molecule. Ber Bunsenges Phys Chem. 1987;91:724–31.

    Article  CAS  Google Scholar 

  19. Brauer G, Zintl E. Konstitution von Phosphiden, Arseniden, Antimoniden und Wismutiden des Lithiums, Natriums und Kaliums. Z Phys Chem Abt B Chem Elem Aufbau Mater. 1937;37:323–52.

    Google Scholar 

  20. Müller W. Darstellung und Struktur der Phase Li2Sb. Z Naturforsch Pt B. 1977;32:357–9.

    Google Scholar 

  21. Barrett CS, Cucka P, Haefner K. The crystal structure of antimony at 4.2, 78 and 298°K. Acta Crystallogr. 1963;16:451–3.

    Article  CAS  Google Scholar 

  22. Dinsdale AT. SGTE Data for Pure Elements. Calphad. 1991;15:317–425.

    Article  CAS  Google Scholar 

  23. Emsley J. The elements. New York: Oxford University Press; 1989.

    Google Scholar 

  24. Gérardin R, Aubry J. Préparation et identification d’un nouveau compose. binaire Li2Sb. C R Acad Sci Paris Sér C. 1974;278:1097–8.

    Google Scholar 

  25. Thomas D, Abdel-Hafiez M, Gruber T, Huttl R, Seidel J, Wolter AUB, Buchner B, Kortus J, Mertens F. The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K. J Chem Thermodyn. 2013;64:205–25.

    Article  CAS  Google Scholar 

  26. Thomas D, Zeilinger M, Gruner D, Huttl R, Seidel J, Wolter AUB, Fassler TF, Mertens F. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K. J Chem Thermodyn. 2015;85:178–90.

    Article  CAS  Google Scholar 

  27. Schäfer H, Axel H, Menges E, Weiss A. Crystal structure of the phase Li7Si2. Z Naturforsch B. 1965;20b:1010.

    Google Scholar 

  28. Schneider A, Hilmer O. Wärmeinhalte und Schmelzentroien von NaTl-Phasen. Z Anorg Allg Chem. 1956;286:97–117.

    Article  CAS  Google Scholar 

  29. Binnewies M, Milke E. Thermochemical data of elements and compounds. Weinheim: Wiley; 2002.

    Book  Google Scholar 

  30. Haynes WM, Lide DR. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 95th ed. Boca Raton: CRC Press/Taylor and Francis; 2011.

    Google Scholar 

  31. Raj D, Bencze L, Kath D, Oates WA, Herrmann J, Singheiser L, Hilpert K. Thermodynamic activity measurements in the B2 phases of the Fe–Al and Ni–Al systems. Intermetallics. 2003;11:1119–24.

    Article  CAS  Google Scholar 

  32. Gurvich LV, Iorish VS, Chekhovskoi DV, Ivanisov AD, Proskurnev AY, Yungman VS, Medvedev VA, Veits IV, Bergman GA. IVTHANTHERMO—database on thermodynamic properties of individual substances. Moscow: Institute of High Temperatures; 1993.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation “Deutsche Forschungsgemeinschaft (DFG)” within the DFG priority program SPP1473 “WeNDeLIB.” V. Motalov thanks the Ministry of Education and Science of the Russian Federation (Project No. 4.3232.2017/PP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Beutl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beutl, A., Henriques, D., Motalov, V. et al. A thermodynamic investigation of the Li–Sb system. J Therm Anal Calorim 131, 2673–2686 (2018). https://doi.org/10.1007/s10973-017-6795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6795-1

Keywords

Navigation