Skip to main content
Log in

High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An integrated process for the recovery of zinc that is generated from zinc hydrometallurgy in residues was developed. A mixture of residue and ferric sulfate was first roasted to transform the various forms of zinc in the residue, such as ferrite, oxide, sulfide, and silicate, into zinc sulfate. Next, water leaching was conducted to extract the zinc while the iron remained in the residue as ferric oxide. The effects of the roasting and leaching parameters on zinc recovery were investigated. A maximum zinc recovery rate of 90.9% was achieved for a mixture with a ferric sulfate/residue weight ratio of 0.05 when roasting at 640°C for 30 min before leaching with water at room temperature for 20 min using a liquid/solid ratio of 10. Only 0.13% of the iron was dissolved in the water. Thus, the leaching liquor could be directly returned for zinc smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.K. Jha, V. Kumar, and R.J. Singh, Resour. Conserv. Recycl. 33, 1 (2001).

    Article  Google Scholar 

  2. M.D. Turan, H.S. Altundoğan, and F. Tümen, Hydrometallurgy 75, 169 (2004).

    Article  Google Scholar 

  3. A.V. Beşe, N. Borulu, M. Çopur, S. Çolak, and O.N. Ata, Chem. Eng. J. 162, 718 (2010).

    Article  Google Scholar 

  4. D. Kuchar, T. Fukuta, M.S. Onyango, and H. Matsuda, J. Hazard. Mater. 137, 185 (2006).

    Article  Google Scholar 

  5. P.C. Holloway, T.H. Etsell, and A.L. Murland, Metall. Mater. Trans. B 38, 781 (2007).

    Article  Google Scholar 

  6. P.C. Holloway, T.H. Etsell, and A.L. Murland, Metall. Mater. Trans. B 38, 793 (2007).

    Article  Google Scholar 

  7. M. Li, B. Peng, L. Chai, N. Peng, H. Yan, and D. Hou, J. Hazard. Mater. 237–238, 323 (2012).

    Article  Google Scholar 

  8. N. Peng, B. Peng, L.-Y. Chai, M. Li, J.-M. Wang, H. Yan, and Y. Yuan, Miner. Eng. 35, 57 (2012).

    Article  Google Scholar 

  9. H. Yan, L.-Y. Chai, B. Peng, M. Li, N. Peng, and D.-K. Hou, Miner. Eng. 55, 103 (2014).

    Article  Google Scholar 

  10. H. Xu, C. Wei, C. Li, G. Fan, Z. Deng, M. Li, and X. Li, Hydrometallurgy 105, 186 (2010).

    Article  Google Scholar 

  11. C. Li, F. Xie, Y. Ma, T. Cai, H. Li, Z. Huang, and G. Yuan, J. Hazard. Mater. 178, 823 (2010).

    Article  Google Scholar 

  12. Q. Liu, Y. Zhao, and G. Zhao, Hydrometallurgy 110, 79 (2011).

    Article  Google Scholar 

  13. M. Soylak, M. Tuzen, A.S. Souza, M.D.G.A. Korn, and S.L.C. Ferreira, J. Hazard. Mater. 149, 264 (2007).

    Article  Google Scholar 

  14. E. Vahidi, F. Rashchi, and D. Moradkhani, Miner. Eng. 22, 204 (2009).

    Article  Google Scholar 

  15. Z. Zhu and C.Y. Cheng, Miner. Eng. 39, 117 (2012).

    Article  Google Scholar 

  16. J.L. Huisman, G. Schouten, and C. Schultz, Hydrometallurgy 83, 106 (2006).

    Article  Google Scholar 

  17. A. Ruşen, A.S. Sunkar, and Y.A. Topkaya, Hydrometallurgy 93, 45 (2008).

    Article  Google Scholar 

  18. S. Nagib and K. Inoue, Hydrometallurgy 56, 269 (2000).

    Article  Google Scholar 

  19. J. Frenay, Hydrometallurgy 15, 243 (1985).

    Article  Google Scholar 

  20. R. Raghavan, P.K. Mohanan, and S.C. Patnaik, Hydrometallurgy 48, 225 (1998).

    Article  Google Scholar 

  21. R. Raghavan, P.K. Mohanan, and S.R. Swarnkar, Hydrometallurgy 58, 113 (2000).

    Article  Google Scholar 

  22. Z.-H. Guo, F.-K. Pan, X.-Y. Xiao, L. Zhang, and K.-Q. Jiang, Trans. Nonferr. Met. Soc. China 20, 2000 (2010).

    Article  Google Scholar 

  23. N. Leclerc, E. Meux, and J.-M. Lecuire, J. Hazard. Mater. 91, 257 (2002).

    Article  Google Scholar 

  24. C. Drouet and A. Navrotsky, Geochim. Cosmochim. Acta 67, 2063 (2003).

    Article  Google Scholar 

  25. J. Li, R.S.C. Smart, R.C. Schumann, A.R. Gerson, and G. Levay, Sci. Total Environ. 373, 391 (2007).

    Article  Google Scholar 

  26. H.S. Altundoğan and F. Tümen, Hydrometallurgy 44, 261 (1997).

    Article  Google Scholar 

  27. Y. Zhang, X. Yu, and X. Li, Hydrometallurgy 109, 211 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the teachers and senior fellow apprentices who helped conduct the experiments. In addition, the authors would like to thank the National High Technology Research and Development Program of China (2011AA061001), the Key Project of Science and Technology of Hunan Province, China (2012FJ1010 and2014FJ1011), and the National Natural Science Foundation of China (51474247) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Peng, B., Chai, Ly. et al. High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching. JOM 67, 2005–2012 (2015). https://doi.org/10.1007/s11837-015-1483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1483-8

Keywords

Navigation