Skip to main content
Log in

Heterogeneous Internal Strain Evolution in Commercial Purity Titanium Due to Anisotropic Coefficients of Thermal Expansion

  • 3D Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Heterogeneous internal elastic strain in polycrystalline hexagonal close-packed materials is found to originate from the intrinsic anisotropy in thermal expansivity. As most noncubic metals have anisotropic thermal expansivity, cooling from elevated temperature leads to internal stresses. To simulate the internal stresses present in a polycrystal prior to plastic deformation, the anisotropic coefficients of thermal expansion over a wide range of temperatures need to be known. One sample of strongly textured commercial purity titanium was probed using high-energy x-ray diffraction microscopy during in situ heating. From averages of the directional lattice strain as a function of temperature, the directional expansion of the material showed a crossover where the incremental \( c \)-axis expansion exceeded the \( a \)-axis expansion between 700°C and 800°C. Applying a three-dimensional crystal thermoelasticity model using a realistic microstructure based upon the experimental data, the anisotropic coefficients of thermal expansion were extracted by fitting to the average strain evolution identified from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering (New York: Wiley, 2011).

    Google Scholar 

  2. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast. 25, 1655 (2009).

    Article  Google Scholar 

  3. P. Zhang, D.S. Balint, and J. Lin, Philos. Mag. 91, 4555 (2011).

    Article  Google Scholar 

  4. Z. Zheng, D.S. Balint, and F.P.E. Dunne, Int. J. Plast. 87, 15 (2016).

    Article  Google Scholar 

  5. B. Chen, J. Jiang, and F.P.E. Dunne, Int. J. Plast. 101, 213 (2018).

    Article  Google Scholar 

  6. D. Ozturk, A. Shahba, and S. Ghosh, Fatigue Fract. Eng. Mater. Struct. 39, 752 (2016).

    Article  Google Scholar 

  7. M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3, 5 (2014).

    Article  Google Scholar 

  8. R. Quey and L. Renversade, Comput. Methods Appl. Mech. Eng. 330, 308 (2018).

    Article  Google Scholar 

  9. V. Tari, R.A. Lebensohn, R. Pokharel, T.J. Turner, P.A. Shade, J.V. Bernier, and A.D. Rollett, Acta Mater. 154, 273 (2018).

    Article  Google Scholar 

  10. W. Xu, M. Ferry, N. Mateescu, J.M. Cairney, and F.J. Humphreys, Mater. Charact. 58, 961 (2007).

    Article  Google Scholar 

  11. C. Zhang, H. Li, P. Eisenlohr, W. Liu, C.J. Boehlert, M.A. Crimp, and T.R. Bieler, Int. J. Plast. 69, 21 (2015).

    Article  Google Scholar 

  12. H.F. Poulsen, S. Garbe, T. Lorentzen, D. Juul Jensen, F.W. Poulsen, N.H. Andersen, T. Frello, R. Feidenhans’l, and H. Graafsma, J. Synchrotron Radiat. 4, 147 (1997).

    Article  Google Scholar 

  13. H. Abdolvand, J. Wright, and A.J. Wilkinson, Nat. Commun. 9, 171 (2018).

    Article  Google Scholar 

  14. J.A. Moore, S.F. Li, M. Rhee, and N.R. Barton, J. Dyn. Behav. Mater. 4, 464 (2018).

    Article  Google Scholar 

  15. K. Chatterjee, J.Y.P. Ko, J.T. Weiss, H.T. Philipp, J. Becker, P. Purohit, S.M. Gruner, and A.J. Beaudoin, J. Mech. Phys. Solids 109, 95 (2017).

    Article  Google Scholar 

  16. T.J. Turner, P.A. Shade, J.V. Bernier, S.F. Li, J.C. Schuren, P. Kenesei, R.M. Suter, and J. Almer, Metall. Mater. Trans. A 48, 627 (2017).

    Article  Google Scholar 

  17. T.R. Bieler, L. Wang, A.J. Beaudoin, P. Kenesei, and U. Lienert, Metall. Mater. Trans. A 45, 109 (2014).

    Article  Google Scholar 

  18. L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.-S. Park, J. Lind, R.M. Suter, and T.R. Bieler, Acta Mater. 132, 598 (2017).

    Article  Google Scholar 

  19. U. Lienert, M.C. Brandes, J.V. Bernier, J. Weiss, S.D. Shastri, M.J. Mills, and M.P. Miller, Mater. Sci. Eng. A 524, 46 (2009).

    Article  Google Scholar 

  20. E.S. Greiner and W.C. Ellis, Met. Technol. 180, 657 (1949).

    Google Scholar 

  21. S. Zinelis, A. Tsetsekou, and T. Papadopoulos, J. Prosthet. Dent. 90, 332 (2003).

    Article  Google Scholar 

  22. P. Hidnert, J. Res. Natl. Bur. Stand. 30, 101 (1943).

    Article  Google Scholar 

  23. R.L.P. Berry and G.V. Raynor, Research 6, 21s (1953).

    Google Scholar 

  24. R.R. Pawar and V.T. Deshpande, Acta Crystallogr. Sect. A 24, 316 (1968).

    Article  Google Scholar 

  25. P.A. Shade, B. Blank, J.C. Schuren, T.J. Turner, P. Kenesei, K. Goetze, R.M. Suter, J.V. Bernier, S.F. Li, J. Lind, U. Lienert, and J. Almer, Rev. Sci. Instrum. 86, 93902 (2015).

    Article  Google Scholar 

  26. L. Wang, J. Lind, H. Phukan, P. Kenesei, J.-S. Park, R.M. Suter, A.J. Beaudoin, and T.R. Bieler, Scr. Mater. 92, 35 (2014).

    Article  Google Scholar 

  27. L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, and G.E. Ice, Metall. Mater. Trans. A 42, 626 (2011).

    Article  Google Scholar 

  28. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp, Scr. Mater. 63, 827 (2010).

    Article  Google Scholar 

  29. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason, Metall. Mater. Trans. A 41, 421 (2009).

    Article  Google Scholar 

  30. N.Y. Juul, G. Winther, D. Dale, M.K.A. Koker, P. Shade, and J. Oddershede, Scr. Mater. 120, 1 (2016).

    Article  Google Scholar 

  31. D.C. Pagan, J.V. Bernier, D. Dale, J.Y.P. Ko, T.J. Turner, B. Blank, and P.A. Shade, Scr. Mater. 142, 96 (2018).

    Article  Google Scholar 

  32. J.V. Bernier, N.R. Barton, U. Lienert, and M.P. Miller, J. Strain Anal. Eng. Des. 46, 527 (2011).

    Article  Google Scholar 

  33. Z. Zheng, A. Stapleton, K. Fox, and F.P.E. Dunne, Int. J. Plast. 111, 234 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation under award DMR-1332208. Z.Z. and F.P.E.D. would like to acknowledge support from the Engineering and Physical Sciences Research Council through HexMat programme grant EP/K034332/1. T.R.B. and P.E. acknowledge support from the Department of Energy Office of Basic Science via grant DE-FG02-09ER46637. F.P.E.D. wishes to acknowledge gratefully the provision of funding for his Royal Academy of Engineering/Rolls-Royce research chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zebang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Eisenlohr, P., Bieler, T.R. et al. Heterogeneous Internal Strain Evolution in Commercial Purity Titanium Due to Anisotropic Coefficients of Thermal Expansion. JOM 72, 39–47 (2020). https://doi.org/10.1007/s11837-019-03743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03743-x

Navigation