Skip to main content
Log in

Plastic Strain Localization in Polycrystalline Titanium. Numerical Simulation

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The paper presents numerical simulation of polycrystalline titanium deformation in terms of the crystal plasticity theory. Based on the experimental data, a three-dimensional polycrystalline model is generated by a method of step-by-step packing. Constitutive relations for the deformation behavior of grains are based on the crystal plasticity theory with regard to the crystalline structure and dislocation glide in hexagonal closepacked crystal lattices. The boundary value problem of elastoplastic deformation is solved numerically using the finite element method. The proposed model is tested by elastoplastic deformation of titanium single crystals having different orientation. The proposed model is used to study the influence of the crystallographic orientation on localized plastic deformation in polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Roters, et al., Acta Mater., 58, 1152–1211 (2010).

    Article  Google Scholar 

  2. P. S. Volegov, D. S. Gribov, and P. V. Trusov, Phys. Mesomech., 20, 174–184 (2017).

    Article  Google Scholar 

  3. P. V. Trusov and N. S. Kondratyev, Phys. Mesomech., 22, 230–241 (2019).

    Article  Google Scholar 

  4. H. Zhang, J. Liu, D. Sui, et al., Int. J. Plasticity, 100, 69–89 (2018).

    Article  Google Scholar 

  5. N. Vajragupta, et al., Phys. Mesomech., 20, 343–352 (2017).

    Article  Google Scholar 

  6. M. Diehl, et al., Phys. Mesomech., 20, 311–323 (2017).

    Article  Google Scholar 

  7. F. Bridier, P. Villechaise, and J. Mendez, Acta. Mater., 53, No. 3, 555–567 (2005).

    Article  Google Scholar 

  8. J. W. Won, K.-T. Park, S.-G. Hong, and C. S. Lee, Mat. Sci. Eng. A-Struct., 637, 215– 221 (2015).

    Article  Google Scholar 

  9. Yu. P. Sharkeev, A. Yu. Eroshenko, Zh. G. Kovalevskaya, et al., Russ. Phys. J., 59, No. 3, 930–934 (2016).

    Article  Google Scholar 

  10. S. Zaefferer, Mat. Sci. Eng. A-Struct., 344, No. 1–2, 20–30 (2003).

    Article  Google Scholar 

  11. V. A. Romanova, et al., Phys. Mesomech., 22, 296–306 (2019).

    Article  Google Scholar 

  12. J. Q. Ren, et al., Mat. Sci. Eng. A-Struct., 731, 530–538 (2018).

    Article  Google Scholar 

  13. A. V. Panin, et al., Phys. Mesomech., 21, 249–257(2018).

    Article  Google Scholar 

  14. V. Romanova, et al., Mat. Sci. Eng. A-Struct., 697, 248–258 (2017).

    Article  Google Scholar 

  15. V. Romanova and R. Balokhonov, Eng. Comput., (2019). DOI: https://doi.org/10.1007/s00366-019-00820-2.

  16. M. L. Miranda-Medina, Surf. Eng., 31, 519–525 (2015).

    Article  Google Scholar 

  17. K. Yoshida, Int. J. Mech. Sci., 83, 48–56 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Emelianova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 3–14, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelianova, E.S., Romanova, V.A., Balokhonov, R.R. et al. Plastic Strain Localization in Polycrystalline Titanium. Numerical Simulation. Russ Phys J 62, 1539–1551 (2020). https://doi.org/10.1007/s11182-020-01874-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01874-2

Keywords

Navigation