Skip to main content
Log in

Distribution of Precious Metals (Ag, Au, Pd, Pt, and Rh) Between Copper Matte and Iron Silicate Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The distributions of precious metals (Ag, Au, Pd, Pt, and Rh) between copper matte and silica-saturated iron silicate slag were determined at 1523 K to 1623 K (1250 °C to 1350 °C), in controlled CO-CO2-SO2-Ar gas mixtures. The experiments were done in silica crucibles and a fixed partial pressure of sulfur dioxide for matte grades of 55, 65, and 75 wt pct Cu. High-temperature equilibration/quenching/electron probe X-ray microanalysis technique was used to obtain compositions of the equilibrated matte and slag. The technique was applied for the first time to the distributions of precious metals in simulated flash smelting conditions. The resolution of electron probe microanalysis became critical as the detection limits were insufficient to measure reliably the precious metals concentrations (except silver) in the slag. The distribution coefficient of silver, L m/s[Ag] = [wt pctAg in matte]/(wt pctAg in slag), was found to be between 200 and 300, which agrees well with the latest studies in the literature. For other precious metals, the minimum values of distribution coefficients were determined according to the detection limits in the slag. The values obtained were for gold and platinum >250, for palladium >1000, and for rhodium >900. The distribution coefficients of palladium, although locating above distribution coefficient of the detection limit, formed a clear dependency with a good repeatability as a function of the matte grade. It increased along with matte grade and was approximately 1000 at 50 pct Cu and 2000 to 3000 at 70 pct Cu. The precious metals replace metal in the matte structure and they are present as sulfides in the copper matte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J R. Dodson, A J. Hunt, H L. Parker, Y. Yang and J H. Clark: Chem. Eng. Process., 2012, vol. 51 (1) pp. 69–78.

    Article  Google Scholar 

  2. B K. Reck and T E. Graedel: Science, 2012, vol. 337 (10 Aug) pp. 690–695.

    Article  Google Scholar 

  3. G. Roghani, Y. Takeda and K. Itagaki: Metall. Mater. Trans. B., 2000, vol. 31B (4) pp. 705–712.

    Article  Google Scholar 

  4. Y. Takeda and G. Roghani: Proc. First Int. Conf. on Processing Materials for Properties, H. Henein and T. Oki, eds., TMS, Warrendale, PA, 1993, pp. 357–60.

  5. G. Roghani, M. Hino, and K. Itagaki: Proc. 5th Int. Conf. on Molten Slags, Fluxes and Salts. Iron Steel Soc, Warrendale, PA, 1997, pp. 693–703.

  6. R. Louey, D. Swinbourne and T. Lehner: AusIMM Proceedings, 1999, vol. 304 (2) pp. 31–36.

    Google Scholar 

  7. M. Kashima, M. Eguchi and A. Yazawa: Trans. Jpn Inst. Met., 1978, vol. 19 (3) pp. 152–158.

    Article  Google Scholar 

  8. H.M. Henao, K. Yamaguchi, and S. Ueda: Proc. Sohn International Symposium, vol. 1, F. Kongoli and R Reddy, eds., TMS, Warrendale, PA, 2006, pp. 723–29.

  9. H. Henao, L. Ushkov, and E. Jak: Proc. 9th Int. Conf. on Molten Slags, Fluxes and Salts (MOLTEN12), The Chinese Society for Metals, Beijing, 2012.

  10. T. Hidayat, P. C. Hayes and E. Jak: Metall. Mater. Trans. B, 2012, vol. 43B (1) pp. 27–38.

    Article  Google Scholar 

  11. X. Xu, P. Hayes and E. Jak: Int. J. Mater. Res., 2012, vol. 103 (5) pp. 529–536.

    Article  Google Scholar 

  12. A. Yazawa: Can. Metall. Q., 1974, vol. 13 (3) pp. 443–453.

    Article  Google Scholar 

  13. J.A. Gisby, A.T. Dinsdale, and P.A. Taskinen: Proc. Eur. Metall. Conf. EMC 2007, vol. 4, GDMB, Clausthal-Zellerfeld, 2007, pp. 1721–36.

  14. SGTE Database for Pure Substances, Scientific Group Thermodata Europe (http://www.sgte.org/).

  15. T. O. Ziebold: Anal. Chem., 39, (1967), p.858-861.

    Article  Google Scholar 

  16. E. Jak and P. Hayes: Proc. VII Int. Conf. on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, Johannesburg, 2004, pp. 85–103.

  17. Y. Takeda: Proc.’97 Conf. Molten Slags, Fluxes and Salts. Iron & Steel Society, Warrendale, PA, 1997, pp. 329–39.

  18. H. Jalkanen, L. Holappa, and J. Mäkinen: Adv. in Sulfide Smelting, vol. 1, H.Y. Sohn, D.B. George, and A.D. Zunkel, eds.,. TMS, Warrendale, PA, 1983, pp. 277–92.

  19. R.S. Celmer and J.M. Toguri: Nickel Metall, vol. 1. Extraction and Refining of Nickel, E. Ozberg and S.W. Marcuson, eds.,. Can. Inst. Min. Metall., Montreal, 1986, pp. 147–63.

  20. A. Roine: HSC Chemistry for Windows, vers. 6.12. Outotec Research, Pori, 2007.

  21. P. Taskinen: Miner. Proc. Extr. Metall., 2011, vol. 120 (4) pp. 240-246.

    Article  Google Scholar 

  22. M. E. Schlesinger, M. J. King, K. C. Sole and W. G. Davenport: Extractive Metallurgy of Copper. 5th ed. Oxford, UK, Elsevier, 2011, 455 p.

    Google Scholar 

  23. F. Richardson and J. Billington: Trans. Inst. Min. Metal., 1956, vol. 593 pp. 273–297.

    Google Scholar 

  24. M. Nagamori and P J. Mackey: Metall. Trans. B, 1978, vol. 9B (6) pp. 567-579.

    Article  Google Scholar 

  25. G. Roghani, J C. Font, M. Hino and K. Itagaki: Mater. Trans. JIM, 1996, vol. 37 (10) pp. 1574–1579.

    Article  Google Scholar 

  26. Y. Takeda: Trans. Jpn Inst. Met., 1983, vol. 24 (7) pp. 518–528.

    Article  Google Scholar 

  27. J H. Park and D J. Min: Mater. Trans. JIM, 2000, vol. 41 (3) pp. 425-428.

    Article  Google Scholar 

  28. Z. Zajacz, P A. Candela, P M. Piccoli, C. Sanches-Valle and M. Wälle: Geochim. Cosmochim. Acta, 2013, vol. 112 (1) pp. 288-304.

    Article  Google Scholar 

  29. A.C. Simon, P A. Candela, P M. Piccoli, M. Mengason, and L. Englander: Am. Mineral. vol. 93, 2008, pp. 1437–48.

  30. E S.Kiseeva and B J. Wood: Earth and Planetary Sci. Lett., 2013, vol. 383 (1) pp. 68-81.

    Article  Google Scholar 

  31. K. Yamaguchi: Proc. Eur. Metall. Conference EMC 2011, vol. 1. GDMB, Clausthal-Zellerfeld, 2011, pp. 171–79.

  32. A. Borisov and H. Palme: Mineral. Petrol., 1996, vol. 56 (3-4) pp. 297–312.

    Article  Google Scholar 

  33. A. Borisov, H. Palme and B. Spettel: Geochim. Cosmochim. Acta, 1994, vol. 58 (2) pp. 705–716.

    Article  Google Scholar 

  34. A. Borisov and H. Palme: Am. Mineral., 2000, vol. 85 (Nov-Dec) pp. 2665–1673.

    Google Scholar 

  35. J E. Mungall and J M. Brenan: Geochim. Cosmochim. Acta, 2014, vol. 125 (1) pp. 265–289.

    Article  Google Scholar 

  36. J M. Toguri and N H. Santander: Metall. Trans., 1972, vol. 3 (2) pp. 586–588.

    Article  Google Scholar 

  37. D. Swinbourne, S. Yan and S. Salim: Miner. Process. Extr. Metall., 2005, vol. 114 (1) pp. C23–C29.

    Article  Google Scholar 

  38. N. Choi and W. Cho: Trace and Reactive Met.: Proc. and Technol., R.G. Reddy and B. Mishra, eds., TMS, Warrendale, 1995, pp. 55–63.

  39. N. Choi and W D. Cho: Miner Metall. Proc., 1998, vol. 15 (3) pp. 23–29.

    Google Scholar 

  40. K. Yamaguchi: Proc. Copper 2010, vol. 3. GDMB, Clausthal-Zellerfeld, 2010, pp. 1287–95.

  41. A. Borisov and H. Palme: Geochim. Cosmochim. Acta, 1997, vol. 61 (20) pp. 4349–4357.

    Article  Google Scholar 

  42. W. Ertel, H S C. O’Neill and P. Sylvester: Geochim. Cosmochim. Acta, 1999, vol. 63 (16) pp. 2439–2449.

    Article  Google Scholar 

  43. J. Amossé: Mineral. Petrol., 2000, vol. 68 (1) pp. 29–61.

    Google Scholar 

  44. P. Dable, M. Allibert, J C. Poignet and J. Amossé: J. Am. Ceram. Soc., 2001, vol. 84 (5) pp. 1097–1107.

    Article  Google Scholar 

  45. C. Wiraseranee, T. Yoshikawa, T.H. Okabe, and K. Morita: J. Min. Metall., Sect B., 2013, vol. 49 (2) pp. 131–138.

    Article  Google Scholar 

  46. K. Morita, C. Wiraseranee, H. Shuto, S. Nakamura, K. Iwasawa, T H. Okabe and N. Sano: Miner. Process. Extr. Metall., 2014, vol. 123 (1) pp. 29–34.

    Article  Google Scholar 

  47. S. Nakamura, K. Iwasawa, K. Morita and N. Sano: Metall. Mater. Trans. B, 1998, vol. 29 (2) pp. 411–414.

    Article  Google Scholar 

  48. H. Shuto, T H. Okabe and K. Morita: Mater. Trans., 2011, vol. 52 (10) pp. 1899–1904.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Boliden Harjavalta for financial support of this study. Moreover, special thanks must be granted to Mr. Tuomas Lehtola and Petri Latostenmaa for their cooperation, support, and advice during this study. We are also indebted to the Geological Survey of Finland (GTK) and Mr. Lassi Pakkanen for carrying out the EPMA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Taskinen.

Additional information

Manuscript submitted May 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avarmaa, K., Johto, H. & Taskinen, P. Distribution of Precious Metals (Ag, Au, Pd, Pt, and Rh) Between Copper Matte and Iron Silicate Slag. Metall Mater Trans B 47, 244–255 (2016). https://doi.org/10.1007/s11663-015-0498-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0498-4

Keywords

Navigation