Skip to main content
Log in

Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Inconel 718 is considered to be a superalloy with a series of superior properties such as high strength, creep resistance, and corrosion resistance at room and elevated temperatures. Additive manufacturing (AM) is particularly appealing to Inconel 718 because of its near-net-shape production capability for circumventing the poor machinability of this superalloy. Nevertheless, AM parts are prone to porosity, which is detrimental to their fatigue resistance. Thus, further understanding of their fatigue behavior is required before their widespread use in load-bearing applications. In this work, the microstructure and fatigue properties of AM Inconel 718, produced in a Laser Engineered Net Shaping (LENS™) system and heat treated with a standard heat treatment schedule, are evaluated at room temperature. Fully reversed strain controlled fatigue tests were performed on cylindrical specimens with straight gage sections at strain amplitudes ranging from 0.001 mm/mm to 0.01 mm/mm. The fracture surfaces of fatigue specimens were inspected with a scanning electron microscope. The results indicate that the employed heat treatment allowed the large, elongated grains and dendritic structure of the as-built material to break down into smaller, equiaxed grains, with some dendritic structures remaining between layers. The AM specimens were found to possess lower fatigue resistance than wrought Inconel 718, and this is primarily attributed to the presence of brittle metal-carbide/oxide inclusions or pores near their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( 2N_{\text{f}} \) :

Reversals to failure

AM:

Additive manufacturing

\( b \) :

Fatigue strength exponent

BD:

Build direction

\( c \) :

Fatigue ductility exponent

\( E \) :

Elastic modulus

EDS:

Energy-dispersive x-ray spectroscopy

LENS:

Laser Engineered Net Shaping

R 2 :

Coefficient of determination

SEM:

Scanning electron microscope

\( \frac{{\Delta \varepsilon }}{2} \) :

Total strain amplitude

\( \varepsilon_{\text{f}}^{{\prime }} \) :

Fatigue ductility coefficient

\( \sigma_{\text{f}}^{{\prime }} \) :

Fatigue strength coefficient

References

  1. H. Krain, A. Sharman, and K. Ridgway, J. Mater. Process. Technol. 189, 153 (2007).

    Article  Google Scholar 

  2. D. Dudzinski, Int. J. Mach. Tool. Manuf. 44, 439 (2004).

    Article  Google Scholar 

  3. C.E. Leshock and J.N. Kim, Int. J. Mach. Tool. Manuf. 41, 877 (2001).

    Article  Google Scholar 

  4. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).

    Article  Google Scholar 

  5. L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67, 629 (2015).

    Article  Google Scholar 

  6. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, J. Mater. Sci. Eng. A 655, 100 (2016).

    Article  Google Scholar 

  7. E. Amsterdam and G.A. Kool, ICAF Symp. 1261 (2009).

  8. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. (New York: Wiley, 2001), p. 106.

    Google Scholar 

  9. Q. Chen, N. Kawagoishi, and H. Nisitani, J. Mater. Sci. Eng. A 277, 250 (2000).

    Article  Google Scholar 

  10. X. Ma, Z. Duan, H. Shi, R. Murai, and E. Yanagisawa, J. Zhejiang Univ. Sci. A 11, 727 (2010).

    Article  Google Scholar 

  11. C. Mercer, A.B.O. Soboyejo, and W.O. Soboyejo, J. Mater. Sci. Eng. A 270, 308 (1999).

    Article  Google Scholar 

  12. H. Andersson and C. Persson, Int. J. Fatigue 26, 211 (2004).

    Article  Google Scholar 

  13. D.W. Worthem, I.M. Robertson, F.A. Leckie, D.F. Socie, and C.J. Alstetter, Metall. Trans. A 21, 3215 (1990).

    Article  Google Scholar 

  14. C. Mercer, A.B.O. Soboyejo, and W.O. Soboyejo, Acta Mater. 47, 2727 (1999).

    Article  Google Scholar 

  15. N. Kawagoishi, Q. Chen, and H. Nisitani, Fatigue Fract. Eng. Mater. Struct. 23, 209 (2000).

    Article  Google Scholar 

  16. C. Brinkman and G.E. Korth, J. Test. Eval. 2, 249 (1974).

    Article  Google Scholar 

  17. ASTM E606/E606 M-12, ASTM International, West Conshohocken, PA, 2012.

  18. X. Zhao, J. Chen, X. Lin, and W. Huang, J. Mater. Sci. Eng. A 478, 119 (2008).

    Article  Google Scholar 

  19. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang, Opt. Laser Technol. 43, 208 (2011).

    Article  Google Scholar 

  20. P.L. Blackwell, J. Mater. Process. Technol. 170, 240 (2005).

    Article  Google Scholar 

  21. Y. Chen, F. Lu, K. Zhang, P. Nie, S.R.E. Hosseini, K. Feng, and Z. Li, J. Alloys Compd. 670, 312 (2016).

    Article  Google Scholar 

  22. H. Qi, M. Azer, and A. Ritter, Metall. Mater. Trans. A 40, 2410 (2009).

    Article  Google Scholar 

  23. L. Xiao, M.C. Chaturvedi, and D.L. Chen, Metall. Mater. Trans. A 36, 2671 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

All data in this study were generated at Mississippi State University’s Center for Advanced Vehicular Systems (CAVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Shamsaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.S., Shao, S., Shamsaei, N. et al. Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718. JOM 69, 597–603 (2017). https://doi.org/10.1007/s11837-016-2225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2225-2

Keywords

Navigation